Data Mining: Concepts and Techniques

— Chapter 3 — inspired from the following textbook

Jiawei Han

Department of Computer Science

University of Illinois at Urbana-Champaign

www.cs.uiuc.edu/~hanj

©2006 Jiawei Han and Micheline Kamber, All rights reserved

November 21, 2021

Chapter 3: Mining Frequent Patterns and Associations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
 - > Apriori
 - FP-growth
 - ECLAT
 - Mining various kinds of association rules

Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

November 21, 2021

Why Is Freq. Pattern Mining Important?

- Discloses an intrinsic and important property of data sets
- Forms the foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: associative classification
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

November 21, 2021

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought	
10	A, B, D	
20	A, C, D	
30	A, D, E	
40	B, E, F	
50	B, C, D, E, F	

Itemset $X = \{x_1, ..., x_k\}$

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, *s*, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ *Freq. Pat.:* {*A:3, B:3, D:4, E:3, AD:3*} Association rules:

 $A \rightarrow D$ (60%, 100%) $D \rightarrow A$ (60%, 75%)

Chapter 3: Mining Frequent Patterns and Associations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
 - Apriori
 - FP-growth
 - ECLAT
 - Mining various kinds of association rules

Summary

Scalable Methods for Mining Frequent Patterns

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {b, d, n} is frequent, so is {b, d}
 - i.e., every transaction having {b, d, n} also contains {b, d}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation-and-Test Approach

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

November 21, 2021

Data Mining: Concepts and Techniques

The Apriori Algorithm

Pseudo-code:

- *C_k*: Candidate itemset of size k
- L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in} \end{cases}$

increment the count of all candidates in C_{k+1} that are contained in t

 L_{k+1} = candidates in C_{k+1} with min_support end

return $\cup_k L_k$;

Important Details of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- How to count supports of candidates?
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: $L_3 * L_3$
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

Challenges of Frequent Pattern Mining

Challenges

- Multiple scans of transaction database
- Huge number of candidates
- Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association in large databases. In VLDB'95

Bottleneck of Frequent-pattern Mining

- Multiple database scans are costly
- Mining long patterns needs many passes of scanning and generates lots of candidates
 - To find frequent itemset i₁i₂...i₁₀₀
 - # of scans: 100
 - # of Candidates: $\binom{100^{1}}{100^{2}} + \binom{100^{2}}{100^{2}} + \dots + \binom{100^{0}}{100^{0}} = 2^{100}$ 1 = 1.27*10³⁰ !
- Bottleneck: candidate-generation-and-test
- Can we avoid candidate generation?

Mining Frequent Patterns Without Candidate Generation

- Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

TID	Items bought
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, \bar{l}, p, m, n\}$

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

 Item frequency

 f
 4

 c
 4

 a
 3

 b
 3

 m
 3

 p
 3

min_support = 3

November 21, 2021

<u>TID</u>	Items bought or	dered frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	min_support = 3
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	support o
300	{ b , f , h , j , o , w }	$\{f, b\}$	
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	{ <i>a, f, c, e, l, p, m, n</i> }	$\{f, c, a, m, p\}$	

F-list=f-c-a-b-m-p

TID	ordered frequent items
100	$\{f, c, a, m, p\}$
200	$\{f, c, a, b, m\}$
300	$\{f, b\}$
400	$\{c, b, p\}$
500	$\{f, c, a, m, p\}$

Scan DB again to construct FP-tree

min_support = 3

F-list=f-c-a-b-m-p

November 21, 2021

TID	Items bought (a	ordered) frequent ite	<u>ms</u>	
100	$\{f, a, c, d, g, i, m, p\}$	{	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i> }		
200	$\{a, b, c, f, l, m, o\}$	{	$f, c, a, b, m\}$		•
300	$\{b, f, h, j, o, w\}$	{	<i>f</i> , <i>b</i> }		min_support = 3
400	$\{b, c, k, s, p\}$	{	<i>c</i> , <i>b</i> , <i>p</i> }		
500	$\{a, f, c, e, l, p, m, n\}$	{	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i> }		{}
Scan D	B once find	Head	der Table		
frequer (sinale	item pattern)	<u>Item</u> f	<u>frequency l</u> 4	<u>head</u>	
			4		$\rightarrow c:3$ $b:1 \rightarrow b:1$
SOLL ILE	equent items in	a	3	.	
trequer	ncy descending	b	3		$n\cdot 3$ $n\cdot 1$
oraer, r	-IIST	m	3	- \	
Scan D	B again,	p	3		m:2 b:1
constru	ict FP-tree				
	F-li	i <mark>st</mark> =f-	c-a-b-m-p	``	p:2 m:1

Data Mining: Concepts and Techniques

1.

2.

3.

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the *count* field)

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list=f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **.**...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of *transformed prefix paths* of item *p* to form *p*'s conditional pattern base

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

November 21, 2021

Recursion: Mining Each Conditional FP-tree

cm-conditional **FP-tree**

Cond. pattern base of "cam": (f:3)

cam-conditional FP-tree

 $\left\{ \right\}$

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts

 $\left\{ \right\}$

- Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two $a_2:n_2$ parts

Mining Frequent Patterns With FP-trees

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

FP-Growth vs. Apriori: Scalability With the Support Threshold

Why Is FP-Growth the Winner?

Divide-and-conquer:

- decompose both the mining task and DB according to the frequent patterns obtained so far
- leads to focused search of smaller databases
- Other factors
 - no candidate generation, no candidate test
 - compressed database: FP-tree structure
 - no repeated scan of entire database
 - basic ops—counting local freq items and building sub FP-tree, no pattern search and matching

CHARM: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving closed patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = {T₂}
- Eclat/MaxEclat (Zaki et al. @KDD'97), VIPER(P. Shenoy et al.@SIGMOD'00), CHARM (Zaki & Hsiao@SDM'02)

November 21, 2021

ECLAT: a simple Algorithm based on the Vertical Approach

ECLAT Algorithm

- 1. Invert the BD
 - a. In the first column place the item
 - b. In the second column place the transactions Ids to which the item belongs
- 2. k = 1 : eliminate all the rows with a number of transactions lower than the minimum support
- 1. k=k+1: **for** all possible pair of rows **do**
 - a. create a new row containing
 - i. in the first column the union of the contents of the first columns
 - ii. in the second column the **intersection** of contents of the second columns
- 2. repeat steps 2 and 3 until no new itemset can be created

November 21, 2021

ECLAT: Example

	itemset	TIDs	itemset	TIDs
TID Items bought	{a}	100, 200,500	{a}	100, 200,500
$\frac{100}{100} \{f, a, c, d, g, i, m, p\}$	{b}	200,300,400	{b}	200,300,400
200 $\{a, b, c, f, l, m, o\}$	{c}	100,200,400, 500	{c}	100,200,400, 500
300 $\{b, f, h, j, o, w\}$	{d}	100	{f}	100, 200, 300, 500
400 $\{b, c, k, s, p\}$	{e}	500	{m}	100, 200, 500
500 { a, f, c, e, l, p, m, n }	{f}	100, 200, 300, 500	{p}	100, 400, 500
	{g}	100		
	{h}	300	T 1	
min_support = 3	{i}	100	L/1	
	{j}	300		
	{k}	400		
	{i}	200, 500		
	{m}	100, 200, 500		
	{n}	500		
	{0}	200, 300		
	{p}	100, 400, 500		

ECLAT: Example

itemset	TIDs
{a}	100, 200,500
{b}	200,300,400
{c}	100,200,400, 500
{f}	100, 200, 300, 500
{m}	100, 200, 500
{p}	100, 400, 500

itemset	TIDs
{a,b}	200
{a,c}	100, 200, 500
{a,f}	100,200,500
{a,m}	100, 200, 500
{a,p}	100, 500
{b,c}	200, 400
{b,m}	200, 500
{b,p}	400
{c,f}	100, 200, 500
{c,m}	100, 200, 500
{c,p}	100, 400, 500
{f,m}	100, 200, 500
{f,p}	100, 500
{m,p}	100, 500

itemset	TIDs
{a,c}	100, 200, 500
{a,f}	100,200,500
{a,m}	100, 200, 500
{c,f}	100, 200, 500
{c,m}	100, 200, 500
{c,p}	100, 400, 500
{f,m}	100, 200, 500

L2

 $(n-1)+(n-2)+...+1=\sum_{1}^{n-1}i=\frac{n(n-1)}{2}=\frac{n^2-n}{2}$

November 21, 2021

ECLAT

itemset	TIDs
{a,c}	100, 200, 500
{a,f}	100,200,500
{a,m}	100, 200, 500
{c,f}	100, 200, 500
{c,m}	100, 200, 500
{c,p}	100, 400, 500
{f,m}	100, 200, 500

itemset	TIDs
{a,c,f}	100, 200, 500
{a,c,m}	100,200,500
{a,c,p}	100,500
{a,c,f,m}	100, 200, 500
{a,f,m}	100, 200, 500
{a,f,c,p}	100, 500
{a,m,c,p}	100, 500
{c,f,m}	100, 200, 500
{c,f,p}	100, 500
{c,m,p}	100, 500
{c,p,f,m}	100, 500

itemset	TIDs
{a,c,f}	100, 200, 500
{a,c,m}	100,200,500
{a,c,f,m}	100, 200, 500
{a,f,m}	100, 200, 500
{c,f,m}	100, 200, 500

L3

ECLAT

TIDs
100, 200, 500
100,200,500
100, 200, 500
100, 200, 500
100, 200, 500

itemset	TIDs	ita
{a,c,f,m}	100, 200, 500	
	1 1	

itemset	TIDs
{a,c,f,m}	100, 200, 500

L4

ECLAT : Global Result

itemset	TIDs
{a}	100, 200,500
{b}	200,300,400
{c}	100,200,400, 500
{ f }	100, 200, 300, 500
{m}	100, 200, 500
{p}	100, 400, 500

itemset	TIDs
{a,c}	100, 200, 500
{a,f}	100,200,500
{a,m}	100, 200, 500
{c,f}	100, 200, 500
{c,m}	100, 200, 500
{c,p}	100, 400, 500
{f,m}	100, 200, 500

itemset	TIDs
{a,c,f}	100, 200, 500
{a,c,m}	100,200,500
{a,c,f,m}	100, 200, 500
{a,f,m}	100, 200, 500
{c,f,m}	100, 200, 500

 $L=\{\{a\}, \{b\}, \{c\}, \{m\}, \{m\}, \{p\}, \{a,c\}, \{a,f\}, \{a,m\}, \{c,f\}, \{c,m\}, \{c,p\}, \{f,m\}, \{a,c,f\}, \{a,c,m\}, \{a,c,f,m\}, \{a,f,m\}, \{c,f,m\}\}$

Chapter 3: Mining Frequent Patterns and Associations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
 - > Apriori
 - FP-growth
 - ECLAT
 - Mining various kinds of association rules

Summary

Mining Association Rules

- A frequent pattern can derive several association rules:
 - an arrow is introduced between the items of the frequent pattern
 - the part appearing before the arrow is called the **antecedent**
 - the part appearing after the arrow is called the **consequent**
- To a rule is associated a support and a confidence
 - the support corresponds to the support of the frequent pattern
 - the confidence is calculated as the probability that the consequent of the rule appears whenever the antecedent appears

Mining Association Rules : Examples

Let consider the frequent patterns calculated by the previous algorithms for the following transactions base:

TID	Items bought
100	$\{f, a, c, d, g, i, m, p\}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, l, p, m, n\}$

 $min_support = 3$

The set of frequent patterns is:

 $L=\{\{a\}, \{b\}, \{c\}, \{m\}, \{m\}, \{p\}, \{a,c\}, \{a,f\}, \{a,m\}, \{c,f\}, \{c,m\}, \{c,p\}, \{f,m\}, \{a,c,f\}, \{a,c,m\}, \{a,c,f,m\}, \{a,f,m\}, \{c,f,m\}\}$

November 21, 2021

Mining Association Rules : Examples

If we consider the frequent itemset **{a,c,m}** then the following association rules can be derived:

→ a,c,m (60%,60%) a,c → m (60%,100%) a → c,m (60%,100%)

If we consider the frequent itemset **{f,c}** then the following association rules can be derived:

c → f (60%,75%)

f → c (60%,75%)

If we consider the frequent itemset **{f,c,m}** then the following association rules can be derived:

f → c,m (60%,75%)

Visualization of Association Rules: Plane Graph

Visualization of Association Rules: Rule Graph

Visualization of Association Rules (SGI/MineSet 3.0)

November 21, 2021

Frequent-Pattern Mining: Summary

- Frequent pattern mining—an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth)
 - Vertical format approach (ECLAT)
- Mining a variety of rules

Ref: Apriori and Its Improvements

- R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
 VLDB'94.
- H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94.
- A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95.
- H. Toivonen. Sampling large databases for association rules. VLDB'96.
- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97.
- S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98.

November 21, 2021

Ref: Depth-First, Projection-Based FP Mining

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemsets. J. Parallel and Distributed Computing:02.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00.
- J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. DMKD'00.
- J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic Projection. KDD'02.
- J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without Minimum Support. ICDM'02.
- J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets. KDD'03.
- G. Liu, H. Lu, W. Lou, J. X. Yu. On Computing, Storing and Querying Frequent Patterns. KDD'03.

November 21, 2021

Ref: Vertical Format and Row Enumeration Methods

- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association rules. DAMI:97.
- Zaki and Hsiao. CHARM: An Efficient Algorithm for Closed Itemset Mining, SDM'02.
- C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints. KDD'02.
- F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. Zaki, CARPENTER: Finding Closed Patterns in Long Biological Datasets. KDD'03.