Data Mining: Concepts and Techniques

- Chapter 4 -

Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign <u>www.cs.uiuc.edu/~hanj</u>

©2006 Jiawei Han and Micheline Kamber, All rights reserved

December 1, 2022

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Classification vs. Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Prediction

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Covid-19 new cases and deaths
 - Target marketing
 - Medical diagnosis
 - Fraud detection

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process (1): Model Construction

December 1, 2022

Process (2): Using the Model in Prediction

December 1, 2022

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Issues: Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues: Evaluating Classification Methods

- Accuracy
 - classifier accuracy: predicting class label
 - predictor accuracy: guessing value of predicted attributes
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Decision Tree Induction: Training Dataset

This follows an example of Quinlan's ID3 (Playing Tennis)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "*buys_computer"*

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by |C_{i, D}|/|D|
- Expected information (entropy) needed to classify a tuple in D: $Info(D) = -\sum_{n=1}^{m} n \log(n)$

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

- Information needed (after using A to split D into v partitions) to classify D: $Info_A(D) = \sum_{i=1}^{\nu} \frac{|D_j|}{|D|} \times I(D_j)$
- Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Attribute Selection: Information Gain

	Class P: buys_computer = "yes" Class N: buys_computer = "no" $Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$									
Info(D)	I = I(9,5)	$y = -\frac{9}{14}$	$\log_2(\frac{9}{14})$	$-\frac{5}{14}$	$\frac{5}{4}\log_2(\frac{5}{14}) =$	0.940 $+\frac{5}{14}I(3,2) = 0.694$				
	age	р	ni ni	I(<mark>p_i, n_i)</mark>	$\frac{5}{I(2,3)}$ means "age <=30" has 5				
	<=30	2	2 3	0.9	971	14 out of 14 samples, with 2 ves'es				
	314	0 4	0	0		and 3 no's Hence				
	>40	3	3 2	0.9	971	and 5 no 5. Thence				
age	income	student	credit_ra	ting	buys_comput	er $Gain(age) = Info(D) - Info(D) = 0.246$				
<=30	high	no	fair		no	=				
<=30	hiah									
		no	excellent		no					
3140	high	no no	excellent fair		no yes	Similarly,				
3140 >40	high medium	no no no	excellent fair fair		no yes yes	Similarly,				
3140 >40 >40	high medium Iow	no no no yes	fair fair fair fair		no yes yes yes	Similarly,				
3140 >40 >40 >40	high medium Iow Iow	no no no yes yes	excellent fair fair fair excellent		no yes yes yes no	Similarly, Gain(income) = 0.029				
3140 >40 >40 >40 3140	high medium Iow Iow	no no yes yes yes	excellent fair fair fair excellent fair		no yes yes no yes	Similarly, Gain(income) = 0.029				
3140 >40 >40 >40 3140 <=30	high medium low low low medium	no no yes yes yes no	excellent fair fair fair excellent fair fair		no yes yes no yes no	Similarly, Gain(income) = 0.029 Gain(student) = 0.151				
3140 >40 >40 3140 <=30 <=30 >40	high medium low low low medium low	no no yes yes yes no yes	excellent fair fair fair excellent excellent fair fair fair		no yes yes no yes no yes	Similarly, Gain(income) = 0.029 Gain(student) = 0.151				
3140 >40 >40 3140 <=30 <=30 >40 <=30	high medium low low low medium low medium medium	no no yes yes yes no yes yes yes	excellent fair fair fair excellent excellent fair fair fair fair excellent		no yes yes no yes no yes yes yes	Similarly, Gain(income) = 0.029 Gain(student) = 0.151 Gain(credit ration) = 0.048				
3140 >40 >40 3140 <=30 <=30 >40 <=30 3140	high medium low low low medium low medium medium	no no yes yes yes no yes yes yes no	excellent fair fair fair excellent fair fair fair fair excellent excellent		no yes yes no yes no yes yes yes yes	Similarly, Gain(income) = 0.029 Gain(student) = 0.151 Gain(credit rating) = 0.048				
3140 >40 >40 3140 <=30 <=30 >40 <=30 3140 3140	high medium low low medium low medium medium medium high	no no yes yes yes no yes yes yes no yes	excellent fair fair fair excellent fair fair fair fair excellent excellent fair		no yes yes no yes no yes yes yes yes yes	Similarly, Gain(income) = 0.029 Gain(student) = 0.151 Gain(credit rating) = 0.048				
	age <=30 <=30	Info(D) = I(9,5) age $<=30$ 314 >40 age $income$ $<=30$ $high$	$Info(D) = I(9,5) = -\frac{9}{14}$ $age p$ $<=30 2$ $3140 4$ $>40 3$ $age income student$ $<=30 high no$	$Info(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14})$ $age p_i n_i$ $<=30 2 3$ $3140 4 0$ $>40 3 2$ $age income student credit_rates = 30$ $high no fair = 30$	$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{9}{14}) - \frac{5}{14}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

GainRatio(A) = Gain(A)/SplitInfo(A)

- **Ex.** SplitInfo_A(D) = $-\frac{4}{14} \times \log_2(\frac{4}{14}) \frac{6}{14} \times \log_2(\frac{6}{14}) \frac{4}{14} \times \log_2(\frac{4}{14}) = 0.926$
 - gain_ratio(income) = 0.029/0.926 = 0.031
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini index (CART, IBM IntelligentMiner)

• If a data set *D* contains examples from *n* classes, gini index, *gini(D)* is defined as n - 2

$$gini(D) = 1 - \sum_{j=1}^{n} p_j^2$$

where p_j is the relative frequency of class j in D

If a data set *D* is split on A into two subsets *D₁* and *D₂*, the *gini* index *gini*(*D*) is defined as

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

• Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Gini index (CART, IBM IntelligentMiner)

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

• Suppose the attribute income partitions D into 10 in D₁: {low, medium} and 4 in D₂ gini_{income \in {low,medium}} (D) = $\left(\frac{10}{14}\right)$ Gini(D₁) + $\left(\frac{4}{14}\right)$ Gini(D₁) = $\frac{10}{14}(1-(\frac{6}{10})^2-(\frac{4}{10})^2) + \frac{4}{14}(1-(\frac{1}{4})^2-(\frac{3}{4})^2)$ = 0.450 = Gini_{income \in {high}}(D)

but $gini_{medium,high}$ is 0.30 and thus the best since it is the lowest

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

December 1, 2022

Other Attribute Selection Measures

- CHAID: a popular decision tree algorithm, measure based on χ² test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistics: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both
 (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - CART: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

December 1, 2022

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

December 1, 2022

Enhancements to Basic Decision Tree Induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
 - Assign probability to each of the possible values
- Attribute construction
 - Create new attributes based on existing ones that are sparsely represented
 - This reduces fragmentation, repetition, and replication

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods

Scalable Decision Tree Induction Methods

SLIQ (EDBT'96 — Mehta et al.)

- Builds an index for each attribute and only class list and the current attribute list reside in memory
- SPRINT (VLDB'96 J. Shafer et al.)
 - Constructs an attribute list data structure
- PUBLIC (VLDB'98 Rastogi & Shim)
 - Integrates tree splitting and tree pruning: stop growing the tree earlier
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)
- BOAT (PODS'99 Gehrke, Ganti, Ramakrishnan & Loh)
 - Uses bootstrapping to create several small samples

Scalability Framework for RainForest

- Separates the scalability aspects from the criteria that determine the quality of the tree
- Builds an AVC-list: AVC (Attribute, Value, Class_label)
- **AVC-set** (of an attribute X)
 - Projection of training dataset onto the attribute X and class label where counts of individual class label are aggregated
- AVC-group (of a node n)
 - Set of AVC-sets of all predictor attributes at the node n

Rainforest: Training Set and Its AVC Sets

Training Examples

		_	_	
age	income	student	redit_rating	_comp
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

AVC-set on Age

Age	Buy_Computer	
	yes	no
<=30	3	2
3140	4	0
>40	3	2

AVC-set on *income*

income	Buy_Computer		
	yes	no	
high	2	2	
medium	4	2	
low	3	1	

AVC-set on *Student*

AVC-set on credit_rating

student	Buy_Computer		One dit	Buy_Computer		
	yes	no	rating	yes	no	
yes	6	1	fair	6	2	
no	3	4	excellent	3	3	

BOAT (Bootstrapped Optimistic Algorithm for Tree Construction)

- Use a statistical technique called *bootstrapping* to create several smaller samples (subsets), each fits in memory
- Each subset is used to create a tree, resulting in several trees
- These trees are examined and used to construct a new tree T'
 - It turns out that T' is very close to the tree that would be generated using the whole data set together
- Adv: requires only two scans of DB, an incremental alg.

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Bayesian Classification: Why?

- <u>A statistical classifier</u>: performs *probabilistic prediction, i.e.,* predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance</u>: A simple Bayesian classifier, *naïve Bayesian classifier*, has comparable performance with decision tree and selected neural network classifiers
- <u>Incremental</u>: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data
- <u>Standard</u>: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayesian Theorem: Basics

- Let X be a data sample ("evidence"): class label is unknown
- Let H be a hypothesis that X belongs to class C
- Classification is to determine P(H|X), the probability that the hypothesis holds given the observed data sample X
- P(H) (*prior probability*), the initial probability
 - E.g., **X** will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- P(X|H) (*posteriori probability*), the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

Bayesian Theorem

 Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$

Informally, this can be written as

posteriori = likelihood x prior/evidence

- Predicts X belongs to C_i iff the probability P(C_i|X) is the highest among all the P(C_k|X) for all the k classes
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Towards Naïve Bayesian Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector X = (x₁, x₂, ..., x_n)
- Suppose there are *m* classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X)
- This can be derived from Bayes' theorem

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i) P(C_i)}{P(\mathbf{X})}$$

• Since P(X) is constant for all classes, only $P(C_i | \mathbf{X}) = P(\mathbf{X} | C_i) P(C_i)$

needs to be maximized

Derivation of Naïve Bayes Classifier

- A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes): $P(\mathbf{X}|_{C_{i}}) = \prod_{k=1}^{n} P(x_{k}|_{C_{i}}) = P(x_{1}|_{C_{i}}) \times P(x_{2}|_{C_{i}}) \times ... \times P(x_{n}|_{C_{i}})$
- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, P(x_k|C_i) is the # of tuples in C_i having value x_k for A_k divided by |C_{i, D}| (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

and $P(x_k|C_i)$ is

 $P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$

December 1, 2022

Naïve Bayesian Classifier: Training Dataset

Class: C1:buys_computer = 'yes' C2:buys_computer = 'no'

Data sample X = (age <=30, Income = medium, Student = yes Credit_rating = Fair)

age	income	student	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: An Example

- $P(C_i)$: $P(buys_computer = "yes") = 9/14 = 0.643$ $P(buys_computer = "no") = 5/14 = 0.357$
- Compute P(X|C_i) for each class
 P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222</p>
 P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6</p>
 P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
 P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
 P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
 P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
 P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
 P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

 $\begin{aligned} \textbf{P}(\textbf{X} | \textbf{C}_{i}) : P(X|buys_computer = ``yes'') &= 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044 \\ P(X|buys_computer = ``no'') &= 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019 \\ \textbf{P}(\textbf{X} | \textbf{C}_{i}) * \textbf{P}(\textbf{C}_{i}) : P(X|buys_computer = ``yes'') * P(buys_computer = ``yes'') &= 0.028 \\ P(X|buys_computer = ``no'') * P(buys_computer = ``no'') &= 0.007 \end{aligned}$

Therefore, X belongs to class ("buys_computer = yes")

December 1, 2022

Avoiding the 0-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be nonzero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10),
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

The "corrected" prob. estimates are close to their "uncorrected" counterparts

Naïve Bayesian Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - Bayesian Belief Networks

December 1, 2022

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Using IF-THEN Rules for Classification

Represent the knowledge in the form of IF-THEN rules

R: IF *age* = youth AND *student* = yes THEN *buys_computer* = yes

- Rule antecedent/precondition vs. rule consequent
- Assessment of a rule: *coverage* and *accuracy*
 - n_{covers} = # of tuples covered by R

n_{correct} = # of tuples correctly classified by R
 coverage(R) = n_{covers} / |D| /* D: training data set */
 accuracy(R) = n_{correct} / n_{covers}

- If more than one rule is triggered, need **conflict resolution**
 - Size ordering: assign the highest priority to the triggering rules that has the "toughest" requirement (i.e., with the most attribute test)
 - Class-based ordering: decreasing order of *prevalence or misclassification* cost per class
 - Rule-based ordering (decision list): rules are organized into one long priority list, according to some measure of rule quality or by experts

December 1, 2022

Rule Extraction from a Decision Tree

- Rules are easier to understand than large trees
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction: the leaf holds the class prediction
- Rules are mutually exclusive and exhaustive
- Example: Rule extraction from our *buys_computer* decision-tree

IF age = young AND student = noTHEN buys_computer = noIF age = young AND student = yesTHEN buys_computer = yesIF age = mid-ageTHEN buys_computer = yesIF age = old AND credit_rating = excellent THEN buys_computer = noIF age = old AND credit_rating = fairTHEN buys_computer = yes

Data Mining: Concepts and Techniques

age?

31..40

yes

>40

excellent

no

credit rating?

fair

yes

<=30

yes

yes

student?

no

no

Rule Extraction from the Training Data

- Sequential covering algorithm: Extracts rules directly from training data
- Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
- Rules are learned *sequentially*, each for a given class C_i will cover many tuples of C_i but none (or few) of the tuples of other classes
- Steps:
 - Rules are learned one at a time
 - Each time a rule is learned, the tuples covered by the rules are removed
 - The process repeats on the remaining tuples unless *termination condition*, e.g., when no more training examples or when the quality of a rule returned is below a user-specified threshold
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*

How to Learn-One-Rule?

- Start with the most general rule possible: condition = empty
- Adding new attributes by adopting a greedy depth-first strategy
 - Picks the one that most improves the rule quality
- Rule-Quality measures: consider both coverage and accuracy
 - Foil-gain (in FOIL & RIPPER): assesses info_gain by extending condition $FOIL Gain = pos' \times (\log_2 \frac{pos'}{1 - \log_2 \frac{pos}{1 -$

$$DIL_Gain = pos' \times (\log_2 \frac{pos}{pos' + neg'} - \log_2 \frac{pos}{pos + neg})$$

It favors rules that have high accuracy and cover many positive tuples

Rule pruning based on an independent set of test tuples

$$FOIL_Prune(R) = \frac{pos - neg}{pos + neg}$$

Pos/neg are # of positive/negative tuples covered by R.

If *FOIL_Prune* is higher for the pruned version of R, prune R

December 1, 2022

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Associative Classification

- Associative classification
 - Association rules are generated and analyzed for use in classification
 - Search for strong associations between frequent patterns (conjunctions of attribute-value pairs) and class labels
 - Classification: Based on evaluating a set of rules in the form of

$$P_1 \land p_2 \dots \land p_l \rightarrow "A_{class} = C'' \text{ (conf, sup)}$$

- Why effective?
 - It explores highly confident associations among multiple attributes and may overcome some constraints introduced by decision-tree induction, which considers only one attribute at a time
 - In many studies, associative classification has been found to be more accurate than some traditional classification methods, such as C4.5

Typical Associative Classification Methods

- CBA (Classification By Association: Liu, Hsu & Ma, KDD'98)
 - Mine association possible rules in the form of
 - Cond-set (a set of attribute-value pairs) \rightarrow class label
 - Build classifier: Organize rules according to decreasing precedence based on confidence and then support
- CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM'01)
 - Classification: Statistical analysis on multiple rules
- CPAR (Classification based on Predictive Association Rules: Yin & Han, SDM'03)
 - Generation of predictive rules (FOIL-like analysis)
 - High efficiency, accuracy similar to CMAR
- RCBT (Mining top-k covering rule groups for gene expression data, Cong et al. SIGMOD'05)
 - Explore high-dimensional classification, using top-k rule groups
 - Achieve high classification accuracy and high run-time efficiency

December 1, 2022

Associative Classification May Achieve High Accuracy and Efficiency (Cong et al. SIGMOD05)

Dataset	RCBT	CBA	IRG Classifier	C4.5 family		SVM	
				single tree	bagging	boosting	
AML/ALL (ALL)	91.18%	91.18%	64.71%	91.18%	91.18%	91.18%	97.06%
Lung Cancer(LC)	97.99%	81.88%	89.93%	81.88%	96.64%	81.88%	96.64%
Ovarian Cancer(OC)	97.67%	93.02%	-	97.67%	97.67%	97.67%	97.67%
Prostate Cancer(PC)	97.06%	82.35%	88.24%	26.47%	26.47%	26.47%	79.41%
Average Accuracy	95.98%	87.11%	80.96%	74.3%	77.99%	74.3%	92.70%

Table 2: Classification Results

December 1, 2022

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Lazy vs. Eager Learning

Lazy vs. eager learning

- Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
- Eager learning (the above discussed methods): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - <u>Case-based reasoning</u>
 - Uses symbolic representations and knowledgebased inference

The *k*-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_q
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

December 1, 2022

Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query x_a $w \equiv \frac{1}{d(x_q, x_i)^2}$
 - Give greater weight to closer neighbors
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

Case-Based Reasoning (CBR)

- CBR: Uses a database of problem solutions to solve new problems
- Store <u>symbolic description</u> (tuples or cases)—not points in a Euclidean space
- <u>Applications</u>: Customer-service (product-related diagnosis), legal ruling
- Methodology
 - Instances represented by rich symbolic descriptions (e.g., function graphs)
 - Search for similar cases, multiple retrieved cases may be combined
 - Tight coupling between case retrieval, knowledge-based reasoning, and problem solving
- Challenges
 - Find a good similarity metric
 - Indexing based on syntactic similarity measure, and when failure, backtracking, and adapting to additional cases

December 1, 2022

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Summary

Genetic Algorithms (GA)

- Genetic Algorithm: based on an analogy to biological evolution
- An initial **population** is created consisting of randomly generated rules
 - Each rule is represented by a string of bits
 - E.g., if A_1 and $\neg A_2$ then C_2 can be encoded as 100
 - If an attribute has k > 2 values, k bits can be used
- Based on the notion of survival of the **fittest**, a new population is formed to consist of the fittest rules and their offsprings
- The fitness of a rule is represented by its *classification accuracy* on a set of training examples
- Offsprings are generated by *crossover* and *mutation*
- The process continues until a population P evolves when each rule in P satisfies a prespecified threshold
- Slow but easily parallelizable

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction <----
- Summary

What Is Prediction?

- (Numerical) prediction is similar to classification
 - construct a model
 - use model to predict continuous or ordered value for a given input
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions
- Major method for prediction: regression
 - model the relationship between one or more *independent* or predictor variables and a *dependent* or response variable
- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
 - Other regression methods: generalized linear model, Poisson regression, log-linear models, regression trees

Linear Regression

 <u>Linear regression</u>: involves a response variable y and a single predictor variable x

 $y = w_0 + w_1 x$

where w_0 (y-intercept) and w_1 (slope) are regression coefficients

Method of least squares: estimates the best-fitting straight line

$$w_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{|D|} (x_{i} - \bar{x})^{2}} \qquad w_{0} = \bar{y} - w_{1}\bar{x}$$

Multiple linear regression: involves more than one predictor variable

- Training data is of the form $(\mathbf{X}_1, \mathbf{y}_1), (\mathbf{X}_2, \mathbf{y}_2), \dots, (\mathbf{X}_{|\mathbf{D}|}, \mathbf{y}_{|\mathsf{D}|})$
- Ex. For 2-D data, we may have: $y = w_0 + w_1 x_1 + w_2 x_2$
- Solvable by extension of least square method or using SAS, S-Plus
- Many nonlinear functions can be transformed into the above

Nonlinear Regression

- Some nonlinear models can be modeled by a polynomial function
- A polynomial regression model can be transformed into linear regression model. For example,

 $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$

convertible to linear with new variables: $x_2 = x^2$, $x_3 = x^3$

 $y = w_0 + w_1 x + w_2 x_2 + w_3 x_3$

- Other functions, such as power function, can also be transformed to linear model
- Some models are intractable nonlinear (e.g., sum of exponential terms)
 - possible to obtain least square estimates through extensive calculation on more complex formulae

December 1, 2022

Other Regression-Based Models

- <u>Generalized linear model</u>:
 - Foundation on which linear regression can be applied to modeling categorical response variables
 - Variance of y is a function of the mean value of y, not a constant
 - Logistic regression: models the prob. of some event occurring as a linear function of a set of predictor variables
 - <u>Poisson regression</u>: models the data that exhibit a Poisson distribution
- Log-linear models: (for categorical data)
 - Approximate discrete multidimensional prob. distributions
 - Also useful for data compression and smoothing
- Regression trees and model trees
 - Trees to predict continuous values rather than class labels

Chapter 4. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- 🛛 Summary 🦛

Summary (I)

- Classification and prediction are two forms of data analysis that can be used to extract models describing important data classes or to predict future data trends.
- Effective and scalable methods have been developed for decision trees induction, Naive Bayesian classification, rule-based classifier, associative classification, nearest neighbor classifiers, and case-based reasoning, and other classification methods such as genetic algorithms.
- Linear, nonlinear, and generalized linear models of regression can be used for prediction. Many nonlinear problems can be converted to linear problems by performing transformations on the predictor variables.

References (1)

- C. Apte and S. Weiss. **Data mining with decision trees and decision rules**. Future Generation Computer Systems, 13, 1997.
- C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995.
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984.
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2): 121-168, 1998.
- P. K. Chan and S. J. Stolfo. Learning arbiter and combiner trees from partitioned data for scaling machine learning. KDD'95.
- W. Cohen. **Fast effective rule induction**. ICML'95.
- G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. Mining top-k covering rule groups for gene expression data. SIGMOD'05.
- A. J. Dobson. An Introduction to Generalized Linear Models. Chapman and Hall, 1990.
- G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences. KDD'99.

References (2)

- R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley and Sons, 2001
- U. M. Fayyad. Branching on attribute values in decision tree generation. AAAI'94.
- Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences, 1997.
- J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast decision tree construction of large datasets. VLDB'98.
- J. Gehrke, V. Gant, R. Ramakrishnan, and W.-Y. Loh, BOAT -- Optimistic Decision Tree Construction. SIGMOD'99.
- T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001.
- D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995.
- M. Kamber, L. Winstone, W. Gong, S. Cheng, and J. Han. Generalization and decision tree induction: Efficient classification in data mining. RIDE'97.
- B. Liu, W. Hsu, and Y. Ma. **Integrating Classification and Association Rule**. KDD'98.
- W. Li, J. Han, and J. Pei, CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules, ICDM'01.

December 1, 2022

References (3)

- T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learning, 2000.
- J. Magidson. The Chaid approach to segmentation modeling: Chi-squared automatic interaction detection. In R. P. Bagozzi, editor, Advanced Methods of Marketing Research, Blackwell Business, 1994.
- M. Mehta, R. Agrawal, and J. Rissanen. SLIQ : A fast scalable classifier for data mining. EDBT'96.
- T. M. Mitchell. **Machine Learning**. McGraw Hill, 1997.
- S. K. Murthy, Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey, Data Mining and Knowledge Discovery 2(4): 345-389, 1998
- J. R. Quinlan. **Induction of decision trees**. *Machine Learning*, 1:81-106, 1986.
- J. R. Quinlan and R. M. Cameron-Jones. **FOIL: A midterm report**. ECML'93.
- J. R. Quinlan. **C4.5: Programs for Machine Learning**. Morgan Kaufmann, 1993.
- J. R. Quinlan. **Bagging, boosting, and c4.5**. AAAI'96.

- R. Rastogi and K. Shim. Public: A decision tree classifier that integrates building and pruning. VLDB'98.
- J. Shafer, R. Agrawal, and M. Mehta. **SPRINT : A scalable parallel classifier for data mining**. VLDB'96.
- J. W. Shavlik and T. G. Dietterich. **Readings in Machine Learning**. Morgan Kaufmann, 1990.
- P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley, 2005.
- S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufman, 1991.
- S. M. Weiss and N. Indurkhya. **Predictive Data Mining**. Morgan Kaufmann, 1997.
- I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, 2ed. Morgan Kaufmann, 2005.
- X. Yin and J. Han. CPAR: Classification based on predictive association rules. SDM'03
- H. Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters. KDD'03.

December 1, 2022