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 Classification

 predicts categorical class labels (discrete or nominal)

 classifies data (constructs a model) based on the 
training set and the values (class labels) in a 
classifying attribute and uses it in classifying new data

 Prediction  

 models continuous-valued functions, i.e., predicts 
unknown or missing values 

 Typical applications

 Covid-19 new cases and deaths

 Target marketing

 Medical diagnosis

 Fraud detection

Classification vs. Prediction
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Classification—A Two-Step Process

 Model construction: describing a set of predetermined classes

 Each tuple/sample is assumed to belong to a predefined class, 
as determined by the class label attribute

 The set of tuples used for model construction is training set

 The model is represented as classification rules, decision trees, 
or mathematical formulae

 Model usage: for classifying future or unknown objects

 Estimate accuracy of the model

 The known label of test sample is compared with the 
classified result from the model

 Accuracy rate is the percentage of test set samples that are 
correctly classified by the model

 Test set is independent of training set, otherwise over-fitting 
will occur

 If the accuracy is acceptable, use the model to classify data
tuples whose class labels are not known
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Process (1): Model Construction

Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Classifier

(Model)
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Process (2): Using the Model in Prediction

Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?



December 1, 2022 Data Mining: Concepts and Techniques 7

Supervised vs. Unsupervised Learning

 Supervised learning (classification)

 Supervision: The training data (observations, 

measurements, etc.) are accompanied by labels 

indicating the class of the observations

 New data is classified based on the training set

 Unsupervised learning (clustering)

 The class labels of training data is unknown

 Given a set of measurements, observations, etc. with 

the aim of establishing the existence of classes or 

clusters in the data
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Issues: Data Preparation

 Data cleaning

 Preprocess data in order to reduce noise and handle 

missing values

 Relevance analysis (feature selection)

 Remove the irrelevant or redundant attributes

 Data transformation

 Generalize and/or normalize data
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Issues: Evaluating Classification Methods

 Accuracy

 classifier accuracy: predicting class label

 predictor accuracy: guessing value of predicted 
attributes

 Speed

 time to construct the model (training time)

 time to use the model (classification/prediction time)

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases 

 Interpretability

 understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision 
tree size or compactness of classification rules
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Decision Tree Induction: Training Dataset

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

This 
follows an  
example 
of 
Quinlan’s 
ID3 
(Playing 
Tennis)
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Output: A Decision Tree for “buys_computer”

age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno
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Algorithm for Decision Tree Induction

 Basic algorithm (a greedy algorithm)

 Tree is constructed in a top-down recursive divide-and-conquer 

manner

 At start, all the training examples are at the root

 Attributes are categorical (if continuous-valued, they are 

discretized in advance)

 Examples are partitioned recursively based on selected attributes

 Test attributes are selected on the basis of a heuristic or 

statistical measure (e.g., information gain)

 Conditions for stopping partitioning

 All samples for a given node belong to the same class

 There are no remaining attributes for further partitioning –

majority voting is employed for classifying the leaf

 There are no samples left
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Attribute Selection Measure: 
Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain

 Let pi be the probability that an arbitrary tuple in D 
belongs to class Ci, estimated by |Ci, D|/|D|

 Expected information (entropy) needed to classify a tuple 
in D:

 Information needed (after using A to split D into v 
partitions) to classify D:

 Information gained by branching on attribute A
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Attribute Selection: Information Gain

 Class P: buys_computer = “yes”

 Class N: buys_computer = “no”

means “age <=30” has 5 

out of 14 samples, with 2 yes’es  

and 3 no’s.   Hence

Similarly,

age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971
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<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Gain Ratio for Attribute Selection (C4.5)

 Information gain measure is biased towards attributes 

with a large number of values

 C4.5 (a successor of ID3) uses gain ratio to overcome the 

problem (normalization to information gain)

 GainRatio(A) = Gain(A)/SplitInfo(A)

 Ex.

 gain_ratio(income) = 0.029/0.926 = 0.031

 The attribute with the maximum gain ratio is selected as 

the splitting attribute
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Gini index (CART, IBM IntelligentMiner)

 If a data set D contains examples from n classes, gini index, gini(D) is 

defined as

where pj is the relative frequency of class j in D

 If a data set D is split on A into two subsets D1 and D2, the gini index 

gini(D) is defined as

 Reduction in Impurity:

 The attribute provides the smallest ginisplit(D) (or the largest reduction 

in impurity) is chosen to split the node (need to enumerate all the 

possible splitting points for each attribute)
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Gini index (CART, IBM IntelligentMiner)

 Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

 Suppose the attribute income partitions D into 10 in D1: {low, 

medium} and 4 in D2

but gini{medium,high} is 0.30 and thus the best since it is the lowest

 All attributes are assumed continuous-valued

 May need other tools, e.g., clustering, to get the possible split values

 Can be modified for categorical attributes
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Comparing Attribute Selection Measures

 The three measures, in general, return good results but

 Information gain: 

 biased towards multivalued attributes

 Gain ratio: 

 tends to prefer unbalanced splits in which one 

partition is much smaller than the others

 Gini index: 

 biased to multivalued attributes

 has difficulty when # of classes is large

 tends to favor tests that result in equal-sized 

partitions and purity in both partitions
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Other Attribute Selection Measures

 CHAID: a popular decision tree algorithm, measure based on χ2 test 

for independence

 C-SEP: performs better than info. gain and gini index in certain cases

 G-statistics: has a close approximation to χ2 distribution 

 MDL (Minimal Description Length) principle (i.e., the simplest solution 

is preferred): 

 The best tree as the one that requires the fewest # of bits to both 

(1) encode the tree, and (2) encode the exceptions to the tree

 Multivariate splits (partition based on multiple variable combinations)

 CART: finds multivariate splits based on a linear comb. of attrs.

 Which attribute selection measure is the best?

 Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

 Overfitting:  An induced tree may overfit the training data 

 Too many branches, some may reflect anomalies due to noise or 

outliers

 Poor accuracy for unseen samples

 Two approaches to avoid overfitting 

 Prepruning: Halt tree construction early—do not split a node if this 

would result in the goodness measure falling below a threshold

 Difficult to choose an appropriate threshold

 Postpruning: Remove branches from a “fully grown” tree—get a 

sequence of progressively pruned trees

 Use a set of data different from the training data to decide 

which is the “best pruned tree”
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Enhancements to Basic Decision Tree Induction

 Allow for continuous-valued attributes

 Dynamically define new discrete-valued attributes that 

partition the continuous attribute value into a discrete 

set of intervals

 Handle missing attribute values

 Assign the most common value of the attribute

 Assign probability to each of the possible values

 Attribute construction

 Create new attributes based on existing ones that are 

sparsely represented

 This reduces fragmentation, repetition, and replication
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Classification in Large Databases

 Classification—a classical problem extensively studied by 

statisticians and machine learning researchers

 Scalability: Classifying data sets with millions of examples 

and hundreds of attributes with reasonable speed

 Why decision tree induction in data mining?

 relatively faster learning speed (than other classification 
methods)

 convertible to simple and easy to understand 
classification rules

 can use SQL queries for accessing databases

 comparable classification accuracy with other methods
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Scalable Decision Tree Induction Methods

 SLIQ (EDBT’96 — Mehta et al.)

 Builds an index for each attribute and only class list and 
the current attribute list reside in memory

 SPRINT (VLDB’96 — J. Shafer et al.)

 Constructs an attribute list data structure 

 PUBLIC (VLDB’98 — Rastogi & Shim)

 Integrates tree splitting and tree pruning: stop growing 
the tree earlier

 RainForest (VLDB’98 — Gehrke, Ramakrishnan & Ganti)

 Builds an AVC-list (attribute, value, class label)

 BOAT (PODS’99 — Gehrke, Ganti, Ramakrishnan & Loh)

 Uses bootstrapping to create several small samples
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Scalability Framework for RainForest

 Separates the scalability aspects from the criteria that 

determine the quality of the tree 

 Builds an AVC-list: AVC (Attribute, Value, Class_label) 

 AVC-set  (of an attribute X )

 Projection of training dataset onto the attribute X and 

class label where counts of individual class label are 

aggregated

 AVC-group  (of a node n )

 Set of AVC-sets of all predictor attributes at the node n
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Rainforest:  Training Set and Its AVC Sets

student Buy_Computer

yes no

yes 6 1

no 3 4

Age Buy_Computer

yes no

<=30 3 2

31..40 4 0

>40 3 2

Credit

rating

Buy_Computer

yes no

fair 6 2

excellent 3 3

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

AVC-set on incomeAVC-set on Age

AVC-set on Student

Training Examples
income Buy_Computer

yes no

high 2 2

medium 4 2

low 3 1

AVC-set on 
credit_rating
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BOAT (Bootstrapped Optimistic Algorithm 
for Tree Construction)

 Use a statistical technique called bootstrapping to create 

several smaller samples (subsets), each fits in memory

 Each subset is used to create a tree, resulting in several 

trees 

 These trees are examined and used to construct a new 

tree T’

 It turns out that T’ is very close to the tree that would 

be generated using the whole data set together

 Adv: requires only two scans of DB, an incremental alg.
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Bayesian Classification: Why?

 A statistical classifier: performs probabilistic prediction, 
i.e., predicts class membership probabilities

 Foundation: Based on Bayes’ Theorem. 

 Performance: A simple Bayesian classifier, naïve Bayesian 
classifier, has comparable performance with decision tree 
and selected neural network classifiers

 Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct — prior knowledge can be combined with observed 
data

 Standard: Even when Bayesian methods are 
computationally intractable, they can provide a standard 
of optimal decision making against which other methods 
can be measured
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Bayesian Theorem: Basics

 Let X be a data sample (“evidence”): class label is unknown

 Let H be a hypothesis that X belongs to class C 

 Classification is to determine P(H|X), the probability that 

the hypothesis holds given the observed data sample X

 P(H) (prior probability), the initial probability

 E.g., X will buy computer, regardless of age, income, …

 P(X): probability that sample data is observed

 P(X|H) (posteriori probability), the probability of observing 

the sample X, given that the hypothesis holds

 E.g., Given that X will buy computer, the prob. that X is 

31..40, medium income
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Bayesian Theorem

 Given training data X, posteriori probability of a 

hypothesis H, P(H|X), follows the Bayes theorem

 Informally, this can be written as 

posteriori = likelihood x prior/evidence

 Predicts X belongs to Ci iff the probability P(Ci|X) is the 

highest among all the P(Ck|X) for all the k classes

 Practical difficulty: require initial knowledge of many 

probabilities, significant computational cost
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Towards Naïve Bayesian Classifier

 Let D be a training set of tuples and their associated class 
labels, and each tuple is represented by an n-D attribute 
vector X = (x1, x2, …, xn)

 Suppose there are m classes C1, C2, …, Cm.

 Classification is to derive the maximum posteriori, i.e., the 
maximal P(Ci|X)

 This can be derived from Bayes’ theorem

 Since P(X) is constant for all classes, only                                        

needs to be maximized

)(

)()|(
)|(

X

X
X

P
i

CP
i

CP

i
CP 

)()|()|(
i

CP
i

CP
i

CP XX 



December 1, 2022 Data Mining: Concepts and Techniques 35

Derivation of Naïve Bayes Classifier 

 A simplified assumption: attributes are conditionally 
independent (i.e., no dependence relation between 
attributes):

 This greatly reduces the computation cost: Only counts 
the class distribution

 If Ak is categorical, P(xk|Ci) is the # of tuples in Ci having 
value xk for Ak divided by |Ci, D| (# of tuples of Ci in D)

 If Ak is continous-valued, P(xk|Ci) is usually computed 
based on Gaussian distribution with a mean μ and 
standard deviation σ

and P(xk|Ci) is 
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Naïve Bayesian Classifier: Training Dataset

Class:

C1:buys_computer = ‘yes’

C2:buys_computer = ‘no’

Data sample 

X = (age <=30,

Income = medium,

Student = yes

Credit_rating = Fair)

age income studentcredit_ratingbuys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Naïve Bayesian Classifier:  An Example

 P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357

 Compute P(X|Ci) for each class
P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222
P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6
P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

 X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore,  X belongs to class (“buys_computer = yes”)
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Avoiding the 0-Probability Problem

 Naïve Bayesian prediction requires each conditional prob. be non-
zero.  Otherwise, the predicted prob. will be zero

 Ex. Suppose a dataset with 1000 tuples, income=low (0), income= 
medium (990), and income = high (10), 

 Use Laplacian correction (or Laplacian estimator)

 Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

 The “corrected” prob. estimates are close to their “uncorrected” 
counterparts
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Naïve Bayesian Classifier: Comments

 Advantages 

 Easy to implement 

 Good results obtained in most of the cases

 Disadvantages

 Assumption: class conditional independence, therefore 
loss of accuracy

 Practically, dependencies exist among variables 

 E.g.,  hospitals: patients: Profile: age, family history, etc. 

Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc. 

 Dependencies among these cannot be modeled by Naïve 
Bayesian Classifier

 How to deal with these dependencies?

 Bayesian Belief Networks 



December 1, 2022 Data Mining: Concepts and Techniques 40

Chapter 4. Classification and Prediction

 What is classification? What is 

prediction?

 Issues regarding classification 

and prediction

 Classification by decision tree 

induction

 Bayesian classification

 Rule-based classification

 Associative classification 

 Lazy learners (or learning from 

your neighbors)

 Other classification methods

 Prediction

 Summary



December 1, 2022 Data Mining: Concepts and Techniques 41

Using IF-THEN Rules for Classification

 Represent the knowledge in the form of IF-THEN rules

R:  IF age = youth AND student = yes  THEN buys_computer = yes

 Rule antecedent/precondition vs. rule consequent

 Assessment of a rule: coverage and accuracy

 ncovers = # of tuples covered by R

 ncorrect = # of tuples correctly classified by R

coverage(R) = ncovers /|D|   /* D: training data set */

accuracy(R) = ncorrect / ncovers

 If more than one rule is triggered, need conflict resolution

 Size ordering: assign the highest priority to the triggering rules that has 

the “toughest” requirement (i.e., with the most attribute test)

 Class-based ordering: decreasing order of prevalence or misclassification 

cost per class

 Rule-based ordering (decision list): rules are organized into one long 

priority list, according to some measure of rule quality or by experts
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age?

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

 Example: Rule extraction from our buys_computer decision-tree

IF age = young AND student = no THEN buys_computer = no

IF age = young AND student = yes THEN buys_computer = yes

IF age = mid-age THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = no

IF age = old AND credit_rating = fair THEN buys_computer = yes

Rule Extraction from a Decision Tree

 Rules are easier to understand than large trees

 One rule is created for each path from the root 

to a leaf

 Each attribute-value pair along a path forms a 

conjunction: the leaf holds the class prediction 

 Rules are mutually exclusive and exhaustive
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Rule Extraction from the Training Data

 Sequential covering algorithm: Extracts rules directly from training data

 Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER

 Rules are learned sequentially, each for a given class Ci will cover many 

tuples of Ci but none (or few) of the tuples of other classes

 Steps: 

 Rules are learned one at a time

 Each time a rule is learned, the tuples covered by the rules are 

removed

 The process repeats on the remaining tuples unless termination 

condition, e.g., when no more training examples or when the quality 

of a rule returned is below a user-specified threshold

 Comp. w. decision-tree induction: learning a set of rules simultaneously
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How to Learn-One-Rule?

 Start with the most general rule possible: condition = empty

 Adding new attributes by adopting a greedy depth-first strategy

 Picks the one that most improves the rule quality

 Rule-Quality measures: consider both coverage and accuracy

 Foil-gain (in FOIL & RIPPER): assesses info_gain by extending 

condition

It favors rules that have high accuracy and cover many positive tuples

 Rule pruning based on an independent set of test tuples

Pos/neg are # of positive/negative tuples covered by R.

If FOIL_Prune is higher for the pruned version of R, prune R
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Chapter 4. Classification and Prediction
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 Issues regarding classification 

and prediction

 Classification by decision tree 
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 Associative classification 

 Lazy learners (or learning from 
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 Prediction

 Summary
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Associative Classification

 Associative classification

 Association rules are generated and analyzed for use in classification

 Search for strong associations between frequent patterns 

(conjunctions of attribute-value pairs) and class labels

 Classification: Based on evaluating a set of rules in the form of 

P1 ^ p2 … ^ pl  “Aclass = C” (conf, sup)

 Why effective?  

 It explores highly confident associations among multiple attributes 

and may overcome some constraints introduced by decision-tree 

induction, which considers only one attribute at a time

 In many studies, associative classification has been found to be more 

accurate than some traditional classification methods, such as C4.5
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Typical Associative Classification Methods

 CBA (Classification By Association: Liu, Hsu & Ma, KDD’98)

 Mine association possible rules in the form of

 Cond-set (a set of attribute-value pairs)  class label

 Build classifier: Organize rules according to decreasing precedence 

based on confidence and then support

 CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM’01)

 Classification: Statistical analysis on multiple rules

 CPAR (Classification based on Predictive Association Rules: Yin & Han, SDM’03)

 Generation of predictive rules (FOIL-like analysis)

 High efficiency, accuracy similar to CMAR

 RCBT (Mining top-k covering rule groups for gene expression data, Cong et al. SIGMOD’05) 

 Explore high-dimensional classification, using top-k rule groups

 Achieve high classification accuracy and high run-time efficiency 
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Associative Classification May Achieve High 
Accuracy and Efficiency (Cong et al. SIGMOD05)
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Lazy vs. Eager Learning

 Lazy vs. eager learning

 Lazy learning (e.g., instance-based learning): Simply 
stores training data (or only minor processing) and 
waits until it is given a test tuple

 Eager learning (the above discussed methods): Given a 
set of training set, constructs a classification model 
before receiving new (e.g., test) data to classify

 Lazy: less time in training but more time in predicting

 Accuracy

 Lazy method effectively uses a richer hypothesis space 
since it uses many local linear functions to form its 
implicit global approximation to the target function

 Eager: must commit to a single hypothesis that covers 
the entire instance space
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Lazy Learner: Instance-Based Methods

 Instance-based learning: 

 Store training examples and delay the processing 
(“lazy evaluation”) until a new instance must be 
classified

 Typical approaches

 k-nearest neighbor approach

 Instances represented as points in a Euclidean 
space.

 Locally weighted regression

 Constructs local approximation

 Case-based reasoning

 Uses symbolic representations and knowledge-
based inference
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The k-Nearest Neighbor Algorithm

 All instances correspond to points in the n-D space

 The nearest neighbor are defined in terms of 
Euclidean distance, dist(X1, X2)

 Target function could be discrete- or real- valued

 For discrete-valued, k-NN returns the most common 
value among the k training examples nearest to xq

 Vonoroi diagram: the decision surface induced by 1-
NN for a typical set of training examples
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Discussion on the k-NN Algorithm

 k-NN for real-valued prediction for a given unknown tuple

 Returns the mean values of the k nearest neighbors

 Distance-weighted nearest neighbor algorithm

 Weight the contribution of each of the k neighbors 

according to their distance to the query xq

 Give greater weight to closer neighbors

 Robust to noisy data by averaging k-nearest neighbors

 Curse of dimensionality: distance between neighbors could 

be dominated by irrelevant attributes   

 To overcome it, axes stretch or elimination of the least 

relevant attributes
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Case-Based Reasoning (CBR)

 CBR: Uses a database of problem solutions to solve new problems

 Store symbolic description (tuples or cases)—not points in a Euclidean 

space

 Applications: Customer-service (product-related diagnosis), legal ruling

 Methodology

 Instances represented by rich symbolic descriptions (e.g., function 

graphs)

 Search for similar cases, multiple retrieved cases may be combined

 Tight coupling between case retrieval, knowledge-based reasoning, 

and problem solving

 Challenges

 Find a good similarity metric 

 Indexing based on syntactic similarity measure,  and when failure, 

backtracking, and adapting to additional cases
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Genetic Algorithms (GA)

 Genetic Algorithm: based on an analogy to biological evolution

 An initial population is created consisting of randomly generated rules

 Each rule is represented by a string of bits

 E.g., if A1 and ¬A2 then C2 can be encoded as 100 

 If an attribute has k > 2 values, k bits can be used 

 Based on the notion of survival of the fittest, a new population is 

formed to consist of the fittest rules and their offsprings  

 The fitness of a rule is represented by its classification accuracy on a 

set of training examples

 Offsprings are generated by crossover and mutation

 The process continues until a population P evolves when each rule in P 

satisfies a prespecified threshold

 Slow but easily parallelizable
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What Is Prediction?

 (Numerical) prediction is similar to classification

 construct a model

 use model to predict continuous or ordered  value for a given input

 Prediction is different from classification

 Classification refers to predict categorical class label

 Prediction models continuous-valued functions

 Major method for prediction: regression

 model the relationship between one or more independent or 
predictor variables and a dependent or response variable

 Regression analysis

 Linear and multiple regression

 Non-linear regression

 Other regression methods: generalized linear model, Poisson 
regression, log-linear models, regression trees
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Linear Regression

 Linear regression: involves a response variable y and a single 

predictor variable x

y = w0 + w1 x

where w0 (y-intercept) and w1 (slope) are regression coefficients 

 Method of least squares: estimates the best-fitting straight line

 Multiple linear regression: involves more than one predictor variable

 Training data is of the form (X1, y1), (X2, y2),…, (X|D|, y|D|) 

 Ex. For 2-D data, we may have: y = w0 + w1 x1+ w2 x2

 Solvable by extension of least square method or using SAS, S-Plus

 Many nonlinear functions can be transformed into the above
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 Some nonlinear models can be modeled by a polynomial 
function

 A polynomial regression model can be transformed into 
linear regression model.  For example,

y = w0 + w1 x + w2 x2 + w3 x3

convertible to linear with new variables: x2 = x2, x3= x3

y = w0 + w1 x + w2 x2 + w3 x3 

 Other functions, such as power function, can also be 
transformed to linear model

 Some models are intractable nonlinear (e.g., sum of 
exponential terms)

 possible to obtain least square estimates through 
extensive calculation on more complex formulae

Nonlinear Regression
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 Generalized linear model: 

 Foundation on which linear regression can be applied to modeling 

categorical response variables

 Variance of y is a function of the mean value of y, not a constant

 Logistic regression: models the prob. of some event occurring as a 

linear function of a set of predictor variables

 Poisson regression: models the data that exhibit a Poisson 

distribution

 Log-linear models: (for categorical data)

 Approximate discrete multidimensional prob. distributions 

 Also useful for data compression and smoothing

 Regression trees and model trees

 Trees to predict continuous values rather than class labels

Other Regression-Based Models
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Summary (I)

 Classification and prediction are two forms of data analysis that can 

be used to extract models describing important data classes or to 

predict future data trends. 

 Effective and scalable methods have been developed for decision 

trees induction, Naive Bayesian classification, rule-based classifier, 

associative classification, nearest neighbor classifiers, and case-based 

reasoning, and other classification methods such as genetic 

algorithms.

 Linear, nonlinear, and generalized linear models of regression can be 

used for prediction.  Many nonlinear problems can be converted to 

linear problems by performing transformations on the predictor 

variables. 
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