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What is Cluster Analysis?

= Cluster: a collection of data objects
= Similar to one another within the same cluster
= Dissimilar to the objects in other clusters

= Cluster analysis

» Finding similarities between data according to the
characteristics found in the data and grouping similar
data objects into clusters

= Unsupervised learning: no predefined classes

= Typical applications
= As a stand-alone tool to get insight into data distribution
= As a preprocessing step for other algorithms
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Clustering: Rich Applications and
Multidisciplinary Efforts

= Pattern Recognition
= Spatial Data Analysis

= Create thematic maps in GIS by clustering feature
spaces

= Detect spatial clusters or for other spatial mining tasks
= Image Processing
= Economic Science (especially market research)
= WWW

=« Document classification

= Cluster Weblog data to discover groups of similar access
patterns
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Quality: What Is Good Clustering?

= A good clustering method will produce high quality
clusters with

= high intra-class similarity

= low inter-class similarity

= The quality of a clustering result depends on both the
similarity measure used by the method and its
implementation

= [he guality of a clustering method is also measured by its
ability to discover some or all of the hidden patterns
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Measure the Quality of Clustering

= Dissimilarity/Similarity metric: Similarity is expressed in
terms of a distance function, typically metric: d/, ))

= There is a separate “quality” function that measures the
“goodness” of a cluster.

= The definitions of distance functions are usually very
different for interval-scaled, boolean, categorical, ordinal
ratio, and vector variables.

= Weights should be associated with different variables
based on applications and data semantics.

= It is hard to define “similar enough” or “good enough”
= the answer is typically highly subjective.
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Data Structures

= Data matrix
= (two modes)

= Dissimilarity matrix
= (One mode)
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Type of data in clustering analysis

s Interval-scaled variables

= Binary variables

= Nominal, ordinal, and ratio variables

= Variables of mixed types
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Interval-valued variables

= Standardize data

= Calculate the mean absolute deviation:
S :]:I'-T(lxlf —Mm;, |+|X2f —M; |+"'+|an —M; )

where M, = L0, +%, ot X )
» Calculate the standardized measurement (z-score)
; — Xe —M,

f
i Sf

= Using mean absolute deviation is more robust than using
standard deviation
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Similarity and Dissimilarity Between
Objects

= Distances are normally used to measure the similarity or
dissimilarity between two data objects

= Some popular ones include: Minkowski distance:

G, =g/, = P = [Tl =X 1Y)
where 7= (X, X -y Xp) andJ (X1s X1 --er Xp) ArE
two p-dimensional data objects, and g is a positive
integer
s If g= 1, dis Manhattan distance
d(|,J):|xi1—xj1|+|xi2—xj2|+...+|xip—xjp|
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Similarity and Dissimilarity Between
Objects (Cont.)

s [fg= 2 dis Euclidean distance:

di, D= [(Ix. =X. P +|X. =X. ["+.4|x. =x. |°
- Prop((erfc)ies}/(| ’ Jll K JZl . Jpl)
= d(j)=0
= (i) =0
= d(j) = dg,i)
= d(ij) < d(i,k) + d(kJ)
= Also, one can use weighted distance, parametric

Pearson product moment correlation, or other
disimilarity measures
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Binary Variables

Object j
1 0 sum
= A contingency table for binary o a b  a+b
data Object i 0 c q ctd
sum| a+c b+d P

= Distance measure for

d(i. j)= b+cC
symmetric binary variables: Uy a+b+c+d

= Distance measure for d, j)= b+c
asymmetric binary variables: ’ a+b+c

= Jaccard coefficient (similarity
measure for asymmetric sim,_..(1,])=
binary variables):

a+b+c
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Dissimilarity between Binary Variables

= Example
Name |Gender |Fever |[Cough |Test-1 | Test-2 | Test-3 | Test-4
Jack |M Y N P N N N
Mary |F Y N P N P N
Jm M Y P N N N N

= gender is a symmetric attribute
= the remaining attributes are asymmetric binary
= let the values Y and P be set to 1, and the value N be set to 0

] O+1
d( jack, mary) = = 0.33
(J y) 2+0+1
] .. 1+1
d( jack, jiIm) = = 0.67
(J ] ) 1+1+1
.. 142
d(jim, mary) = = 0.75
(J Y) 1+1+2
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Nominal Variables

= A generalization of the binary variable in that it can take
more than 2 states, e.q., red, yellow, blue, green

= Method 1: Simple matching

« M. # of matches, p: total # of variables

© Ry p—m
d@, =50
= Method 2: use a large number of binary variables

= Creating a new binary variable for each of the M
nominal states
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Ordinal Variables

= An ordinal variable can be discrete or continuous
= Order is important, e.g., rank
= Can be treated like interval-scaled

replace x, by their rank re €4d...M ¢}

map the range of each variable onto [0, 1] by replacing
Fth object in the F#th variable by

r.. —1

if

if N —1

f

compute the dissimilarity using methods for interval-
scaled variables
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Ratio-Scaled Variables

= Ratio-scaled variable: a positive measurement on a
nonlinear scale, approximately at exponential scale,
such as Aeft or Aet

= Methods:

= treat them like interval-scaled variables—not a good
choice! (why?—the scale can be distorted)

= apply logarithmic transformation

Vie= 10g(Xy)
= treat them as continuous ordinal data treat their rank
as interval-scaled
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Variables of Mixed Types

= A database may contain all the six types of variables

= symmetric binary, asymmetric binary, nominal,
ordinal, interval and ratio

= One may use a weighted formula to combine their
effects ad. j)_z'?zlgi}f)digf)
STEEISR

= f is binary or nominal:
d;" = 0 if x¢ = x;¢, or d;\" = 1 otherwise

« f is interval-based: use the normalized distance

= f is ordinal or ratio-scaled
= compute ranks r; and

= and treat z; as interval-scaled it “ M. 1
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Vector Objects

= Vector objects: keywords in documents, gene
features in micro-arrays, etc.

= Broad applications: information retrieval, biologic
taxonomy, etc.

= Cosine measure (¥ V)=

Xty
XY

X* is a transposition of vector X, |X| is the Euclidean normal of vector X,

= A variant: Tanimoto coefficient

Lo Xty
HX. V) = —— —
Xt . X 4Vt V- Xty
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Major Clustering Approaches

= Partitioning approach:

Construct various partitions and then evaluate them by some criterion, e.g.,
minimizing the sum of square errors

Typical methods: k-means, k-medoids, CLARANS

= Hierarchical approach:

Create a hierarchical decomposition of the set of data (or objects) using some
criterion

Typical methods: Diana, Agnes

= Density-based approach:

Based on connectivity and density functions
Typical methods: DBSCAN
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Typical Alternatives to Calculate the Distance
between Clusters

= Single link: smallest distance between an element in one cluster

and an element in the other, i.e., dis(K;, K;) = min(t, t;,)

= Complete link: largest distance between an element in one cluster

and an element in the other, i.e., dis(K, K;) = max(t, t;)

= Average: avg distance between an element in one cluster and an

element in the other, i.e., dis(K; K) = avg(t;, t)

= Centroid: distance between the centroids of two clusters, i.e.,
dis(K;, K;) = dis(C;, C)
= Medoid: distance between the medoids of two clusters, i.e., dis(K,
K;) = dis(M;, M)
= Medoid: one chosen, centrally located object in the cluster
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Distance between clusters

CD(X’Y):minX eX,yeY D(X’y)

CD(X,Y)=max, .x y .y D(X,y)

CD(X,Y)=avg, cx y v D(X,Y)

CD(X,Y)=D( avg(X) , avg(Y))




Centroid, Radius and Diameter of a
Cluster (for numerical data sets)

= Centroid: the “middle” of a cluster ZN 1(t|p)

N
= Radius: square root of average distance from any point of the

cluster to its centroid 5

(tIIO —Cp,

N

= Diameter: square root of average mean squared distance between
all pairs of points in the cluster

N N ., 12
5 \/zilzil(tip lig)
.

N(N -1)

Rm:
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Partitioning Algorithms: Basic Concept

Partitioning method: Construct a partition of a database D of n objects

into a set of k clusters, s.t., min sum of squared distance

zw‘kmzlztmieKm (Cm - 1:mi )2

Given a k, find a partition of & clusters that optimizes the chosen

partitioning criterion

Global optimal: exhaustively enumerate all partitions
Heuristic methods: k-means and k-medoids algorithms
k-means (MacQueen’67): Each cluster is represented by the center

of the cluster
k-medoids or PAM (Partition around medoids) (Kaufman &

Rousseeuw’87): Each cluster is represented by one of the objects
in the cluster
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The K-Means Clustering Method

= Given k, the k-means algorithm is implemented in
four steps:

= Partition objects into A nonempty subsets

= Compute seed points as the centroids of the
clusters of the current partition (the centroid is the
center, i.e., mean point, of the cluster)

= Assign each object to the cluster with the nearest
seed point

= Go back to Step 2, stop when no more new
assignment
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The K-Means Clustering Method

= Example

=
o

o P N W M O O N © ©
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Comments on the K-Means Method

= Strength: Relatively efficient. O(tkn), where nis # objects, kis #
clusters, and ¢ is # iterations. Normally, &, ¢ << n.

= Comparing: PAM: O(k(n-k)? ), CLARA: O(ks? + k(n-k))
= Comment: Often terminates at a /ocal optimum. The global optimum

may be found using techniques such as: deterministic annealing and
genetic algorithms

= Weakness

= Applicable only when mean is defined, then what about categorical
data?

= Need to specify &, the number of clusters, in advance
= Unable to handle noisy data and outliers
= Not suitable to discover clusters with non-convex shapes
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Variations of the K~-Means Method

A few variants of the k-means which differ in
= Selection of the initial A means
= Dissimilarity calculations
= Strategies to calculate cluster means
Handling categorical data: k-modes (Huang'o8)
= Replacing means of clusters with modes
= Using new dissimilarity measures to deal with categorical objects

= Using a frequency-based method to update modes of clusters

= A mixture of categorical and numerical data: k-prototype method
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What Is the Problem of the K-Means Method?

= The k-means algorithm is sensitive to outliers !

= Since an object with an extremely large value may substantially
distort the distribution of the data.

= K-Medoids: Instead of taking the mean value of the object in a
cluster as a reference point, medoids can be used, which is the most

centrally located object in a cluster.

000000000000000000000000
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The K~Medoids Clustering Method

= Find representative objects, called medoids, in clusters
= PAM (Partitioning Around Medoids, 1987)

« starts from an initial set of medoids and iteratively replaces one
of the medoids by one of the non-medoids if it improves the
total distance of the resulting clustering

= PAM works effectively for small data sets, but does not scale
well for large data sets

= CLARA (Kaufmann & Rousseeuw, 1990)
s CLARANS (Ng & Han, 1994): Randomized sampling

= Focusing + spatial data structure (Ester et al., 1995)
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A Typical K-Medoids Algorithm (PAM)

10

30

0 1 2 3 4 5 6 7 8 9 10

<} - N w IN 3 o ~

>

Arbitrary
choose k
object as
initial

medoids

K=2

Do loop

Until no
change

January 10, 2022

Swapping O
and Oramdom

If quality is
improved.

Total Cost = 20

>

Assign
each
remainin
g object
to
nearest
medoids

Total Cost = 26 T

’ 4

. !
| 2
o

0 1 2 3 4 5 6 7 8 9 10

Data Mining: Concepts and Techniques

l

Randomly select a

nonmedoid object,O,,mdom

«—

Compute
total cost of
swapping

¢

b

*2

o

[ 1 2 3 4 5 6 7 8 9 10

33




PAM (Partitioning Around Medoids) (1987)

= PAM (Kaufman and Rousseeuw, 1987), built in Splus
= Use real object to represent the cluster
» Select k representative objects arbitrarily

= For each pair of non-selected object A and selected
object /, calculate the total swapping cost 7TC,,

« For each pair of 7and A,
« If 7C, < 0, 7is replaced by A

= Then assign each non-selected object to the most
similar representative object

= repeat steps 2-3 until there is no change
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PAM Clustering: Total swapping cost 7C,=2.C;,
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What Is the Problem with PAM?

= Pam is more robust than k-means in the presence of
noise and outliers because a medoid is less influenced by
outliers or other extreme values than a mean

= Pam works efficiently for small data sets but does not
scale well for large data sets.

= O(k(n-k)? ) for each iteration
where n is # of data,k is # of clusters

= Sampling based method,
CLARA(Clustering LARge Applications)
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CLARA (Clustering Large Applications) (1990)

= CLARA (Kaufmann and Rousseeuw in 1990)

» Built in statistical analysis packages, such as S+

= It draws multiple samples of the data set, applies PAM on
each sample, and gives the best clustering as the output

= Strength: deals with larger data sets than PAM

= Weakness:
» Efficiency depends on the sample size

= A good clustering based on samples will not
necessarily represent a good clustering of the whole
data set if the sample is biased
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CLARANS ("Randomized” CLARA) (1994)

CLARANS (A Clustering Algorithm based on Randomized
Search) (Ng and Han94)

CLARANS draws sample of neighbors dynamically

The clustering process can be presented as searching a
graph where every node is a potential solution, that is, a
set of £ medoids

If the local optimum is found, CLARANS starts with new
randomly selected node in search for a new local optimum

It is more efficient and scalable than both PAM and CLARA

Focusing techniques and spatial access structures may
further improve its performance (Ester et al.’95)
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Hierarchical Clustering

= Use distance matrix as clustering criteria. This method
does not require the number of clusters kas an input,
but needs a termination condition

Step0 Stepl Step2 Step3 Step4

| | | | | agglomerative

- (AGNEYS)

| | | | | divisive
Step4 Step3 Step2 Stepl StepO (D 1AN A)
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AGNES (Agglomerative Nesting)

= Introduced in Kaufmann and Rousseeuw (1990)

= Implemented in statistical analysis packages, e.g., Splus
= Use the Single-Link method and the dissimilarity matrix.
= Merge nodes that have the least dissimilarity

= GO on in a non-descending fashion

= Eventually all nodes belong to the same cluster
R e BFC:
e~ by - tiea
D¢ ?a/ -\ O ?'z \
¢+ 2 > 2 &
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Dendrogram: Shows How the Clusters are Merged

Decompose data objects into a several levels of nested

partit

A clustering of the data objects is abtained by cutting

ioning (tree of clusters), call

dendrogram at the desired Igvel, then ea

component forms a cluster.
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DIANA (Divisive Analysis)

= Introduced in Kaufmann and Rousseeuw (1990)
s Implemented in statistical analysis packages, e.g., Splus

a Inverse order of AGNES

= Eventually each node forms a cluster on its own

7 X %\
/] ** , ’/ * \. (\‘
(¢ 71D ’ \‘_z N / g\
‘ ! ?’: 2\ g \) l, — l !
\‘ / i 4 4~ [\ D¢ yi
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Density-Based Clustering Methods

= Clustering based on density (local cluster criterion), such
as density-connected points

= Major features:

= Discover clusters of arbitrary shape

=« Handle noise

= One scan

= Need density parameters as termination condition
= Several interesting studies:

=« DBSCAN: Ester, et al. (KDD’96)

= OPTICS: Ankerst, et al (SIGMOD’99).

» DENCLUE: Hinneburg & D. Keim (KDD’98)

» CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)
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Density-Based Clustering: Basic Concepts

= WO parameters.

= £ps: Maximum radius of the neighbourhood

= MinPts: Minimum number of points in an Eps-
neighbourhood of that point

= Neg(p):  {q belongs to D | dist(p,q) <= Eps}

= Directly density-reachable: A point pis directly density-
reachable from a point g w.r.t. Eps, MinPts if

= pbelongs to Ng,4(q) |
= core point condition: . “ MinPts = 5
= M Eps=1cm
|NEp5 (Q)l >= M/nPZ'S @
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Density-Reachable and Density-Connected

= Density-reachable:

= A point pis density-reachable from
a point gw.r.t. Eps, MinPts if there
is a chain of points p,, ..., p, p; =

g, p, = psuch that p;,, is directly
density-reachable from p;

= Density-connected

= A point pis density-connected to a
point gw.r.t. £Eps, MinPts if there
is a point o such that both, p and
g are density-reachable from o
w.r.t. Epsand MinPts
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DBSCAN: Density Based Spatial Clustering of
Applications with Noise

= Relies on a density-based notion of cluster: A clusteris
defined as a maximal set of density-connected points

= Discovers clusters of arbitrary shape in spatial databases

with noise
,’/ \\\ |
© Outlier
leoe @
Border |\ o / ° o
@@Q QO Eps = 1cm
Core ‘@ @ MinPts = 5
___C)O
o
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DBSCAN: The Algorithm

= Arbitrary select a point p

= Retrieve all points density-reachable from pw.r.t. £ps
and MinPts.

= If pis a core point, a cluster is formed.

= If pis a border point, no points are density-reachable

from p and DBSCAN visits the next point of the database.

= Continue the process until all of the points have been
processed.
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DBSCAN: Sensitive to Parameters

Figure 8. DBScan
results for DS1 with
MinPts at 4 and Eps at
(a) 0.5and (b) 0.4.

Figure 9. DBScan
results for DS2 with
MinPts at 4 and Eps at
(a)5.0. (b) 3.5, and
fc) 3.0.
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Summary

= Cluster analysis groups objects based on their similarity
and has wide applications

= Measure of similarity can be computed for various types
of data

= Clustering algorithms can be categorized into partitioning
methods, hierarchical methods, and density-based
methods

= There are still lots of research issues on cluster analysis
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