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What is Cluster Analysis?

 Cluster: a collection of data objects

 Similar to one another within the same cluster

 Dissimilar to the objects in other clusters

 Cluster analysis

 Finding similarities between data according to the 

characteristics found in the data and grouping similar 

data objects into clusters

 Unsupervised learning: no predefined classes

 Typical applications

 As a stand-alone tool to get insight into data distribution 

 As a preprocessing step for other algorithms
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Clustering: Rich Applications and 
Multidisciplinary Efforts

 Pattern Recognition

 Spatial Data Analysis 

 Create thematic maps in GIS by clustering feature 

spaces

 Detect spatial clusters or for other spatial mining tasks

 Image Processing

 Economic Science (especially market research)

 WWW

 Document classification

 Cluster Weblog data to discover groups of similar access 

patterns
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Quality: What Is Good Clustering?

 A good clustering method will produce high quality 

clusters with

 high intra-class similarity

 low inter-class similarity 

 The quality of a clustering result depends on both the 

similarity measure used by the method and its 

implementation

 The quality of a clustering method is also measured by its 

ability to discover some or all of the hidden patterns
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Measure the Quality of Clustering

 Dissimilarity/Similarity metric: Similarity is expressed in 

terms of a distance function, typically metric: d(i, j)

 There is a separate “quality” function that measures the 

“goodness” of a cluster.

 The definitions of distance functions are usually very 

different for interval-scaled, boolean, categorical, ordinal 

ratio, and vector variables.

 Weights should be associated with different variables 

based on applications and data semantics.

 It is hard to define “similar enough” or “good enough” 

 the answer is typically highly subjective.
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Data Structures

 Data matrix

 (two modes)

 Dissimilarity matrix

 (one mode)
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Type of data in clustering analysis

 Interval-scaled variables

 Binary variables

 Nominal, ordinal, and ratio variables

 Variables of mixed types
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Interval-valued variables

 Standardize data

 Calculate the mean absolute deviation:

where

 Calculate the standardized measurement (z-score)

 Using mean absolute deviation is more robust than using 

standard deviation 
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Similarity and Dissimilarity Between 
Objects

 Distances are normally used to measure the similarity or 

dissimilarity between two data objects

 Some popular ones include: Minkowski distance:

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are 

two p-dimensional data objects, and q is a positive 

integer

 If q = 1, d is Manhattan distance
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Similarity and Dissimilarity Between 
Objects (Cont.)

 If q = 2, d is Euclidean distance:

 Properties

 d(i,j)  0

 d(i,i) = 0

 d(i,j) = d(j,i)

 d(i,j)  d(i,k) + d(k,j)

 Also, one can use weighted distance, parametric 

Pearson product moment correlation, or other 

disimilarity measures
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Binary Variables

 A contingency table for binary 

data

 Distance measure for 

symmetric binary variables: 

 Distance measure for 

asymmetric binary variables: 

 Jaccard coefficient (similarity

measure for asymmetric 

binary variables): 
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Dissimilarity between Binary Variables

 Example

 gender is a symmetric attribute

 the remaining attributes are asymmetric binary

 let the values Y and P be set to 1, and the value N be set to 0

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Nominal Variables

 A generalization of the binary variable in that it can take 

more than 2 states, e.g., red, yellow, blue, green

 Method 1: Simple matching

 m: # of matches, p: total # of variables

 Method 2: use a large number of binary variables

 creating a new binary variable for each of the M

nominal states
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Ordinal Variables

 An ordinal variable can be discrete or continuous

 Order is important, e.g., rank

 Can be treated like interval-scaled 

 replace xif by their rank 

 map the range of each variable onto [0, 1] by replacing

i-th object in the f-th variable by

 compute the dissimilarity using methods for interval-

scaled variables
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Ratio-Scaled Variables

 Ratio-scaled variable: a positive measurement on a 

nonlinear scale, approximately at exponential scale, 

such as AeBt or Ae-Bt

 Methods:

 treat them like interval-scaled variables—not a good 

choice! (why?—the scale can be distorted)

 apply logarithmic transformation

yif = log(xif)

 treat them as continuous ordinal data treat their rank 

as interval-scaled
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Variables of Mixed Types

 A database may contain all the six types of variables

 symmetric binary, asymmetric binary, nominal, 
ordinal, interval and ratio

 One may use a weighted formula to combine their 
effects

 f is binary or nominal:

dij
(f) = 0  if xif = xjf , or dij

(f) = 1 otherwise

 f is interval-based: use the normalized distance

 f is ordinal or ratio-scaled

 compute ranks rif and  

 and treat zif as interval-scaled
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Vector Objects

 Vector objects: keywords in documents, gene 

features in micro-arrays, etc.

 Broad applications: information retrieval, biologic 

taxonomy, etc.

 Cosine measure

 A variant: Tanimoto coefficient
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Major Clustering Approaches

 Partitioning approach: 

 Construct various partitions and then evaluate them by some criterion, e.g., 

minimizing the sum of square errors

 Typical methods: k-means, k-medoids, CLARANS

 Hierarchical approach: 

 Create a hierarchical decomposition of the set of data (or objects) using some 

criterion

 Typical methods: Diana, Agnes

 Density-based approach: 

 Based on connectivity and density functions

 Typical methods: DBSCAN
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Typical Alternatives to Calculate the Distance 
between Clusters

 Single link:  smallest distance between an element in one cluster 

and an element in the other, i.e.,  dis(Ki, Kj) = min(tip, tjq)

 Complete link: largest distance between an element in one cluster 

and an element in the other, i.e.,  dis(Ki, Kj) = max(tip, tjq)

 Average: avg distance between an element in one cluster and an 

element in the other, i.e.,  dis(Ki, Kj) = avg(tip, tjq)

 Centroid: distance between the centroids of two clusters, i.e.,  

dis(Ki, Kj) = dis(Ci, Cj)

 Medoid: distance between the medoids of two clusters, i.e.,  dis(Ki, 

Kj) = dis(Mi, Mj)

 Medoid: one chosen, centrally located object in the cluster



Distance between clusters

• CD(X,Y)=minx X, y Y D(x,y)

Single-link method

• CD(X,Y)=maxx X, y Y D(x,y)

Complete-link method

• CD(X,Y)=avgx X, y Y D(x,y)

Average-link method

• CD(X,Y)=D( avg(X) , avg(Y) )

Centroid method
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Centroid, Radius and Diameter of a 
Cluster (for numerical data sets)

 Centroid:  the “middle” of a cluster

 Radius: square root of average distance from any point of the 

cluster to its centroid

 Diameter: square root of average mean squared distance between 

all pairs of points in the cluster
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Partitioning Algorithms: Basic Concept

 Partitioning method: Construct a partition of a database D of n objects 

into a set of k clusters, s.t., min sum of squared distance

 Given a k, find a partition of k clusters that optimizes the chosen 

partitioning criterion

 Global optimal: exhaustively enumerate all partitions

 Heuristic methods: k-means and k-medoids algorithms

 k-means (MacQueen’67): Each cluster is represented by the center 

of the cluster

 k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects 

in the cluster  
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The K-Means Clustering Method

 Given k, the k-means algorithm is implemented in 

four steps:

 Partition objects into k nonempty subsets

 Compute seed points as the centroids of the 

clusters of the current partition (the centroid is the 

center, i.e., mean point, of the cluster)

 Assign each object to the cluster with the nearest 

seed point  

 Go back to Step 2, stop when no more new 

assignment
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The K-Means Clustering Method

 Example
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Comments on the K-Means Method

 Strength: Relatively efficient: O(tkn), where n is # objects, k is # 

clusters, and t  is # iterations. Normally, k, t << n.

 Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k))

 Comment: Often terminates at a local optimum. The global optimum

may be found using techniques such as: deterministic annealing and 

genetic algorithms

 Weakness

 Applicable only when mean is defined, then what about categorical 

data?

 Need to specify k, the number of clusters, in advance

 Unable to handle noisy data and outliers

 Not suitable to discover clusters with non-convex shapes
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Variations of the K-Means Method

 A few variants of the k-means which differ in

 Selection of the initial k means

 Dissimilarity calculations

 Strategies to calculate cluster means

 Handling categorical data: k-modes (Huang’98)

 Replacing means of clusters with modes

 Using new dissimilarity measures to deal with categorical objects

 Using a frequency-based method to update modes of clusters

 A mixture of categorical and numerical data: k-prototype method
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What Is the Problem of the K-Means Method?

 The k-means algorithm is sensitive to outliers !

 Since an object with an extremely large value may substantially 

distort the distribution of the data.

 K-Medoids:  Instead of taking the mean value of the object in a 

cluster as a reference point, medoids can be used, which is the most 

centrally located object in a cluster. 
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The K-Medoids Clustering Method

 Find representative objects, called medoids, in clusters

 PAM (Partitioning Around Medoids, 1987)

 starts from an initial set of medoids and iteratively replaces one 

of the medoids by one of the non-medoids if it improves the 

total distance of the resulting clustering

 PAM works effectively for small data sets, but does not scale 

well for large data sets

 CLARA (Kaufmann & Rousseeuw, 1990)

 CLARANS (Ng & Han, 1994): Randomized sampling

 Focusing + spatial data structure (Ester et al., 1995)
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A Typical K-Medoids Algorithm (PAM)
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PAM (Partitioning Around Medoids) (1987)

 PAM (Kaufman and Rousseeuw, 1987), built in Splus

 Use real object to represent the cluster

 Select k representative objects arbitrarily

 For each pair of non-selected object h and selected 

object i, calculate the total swapping cost TCih

 For each pair of i and h, 

 If TCih < 0, i is replaced by h

 Then assign each non-selected object to the most 

similar representative object

 repeat steps 2-3 until there is no change
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PAM Clustering: Total swapping cost TCih=jCjih
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What Is the Problem with PAM?

 Pam is more robust than k-means in the presence of 

noise and outliers because a medoid is less influenced by 

outliers or other extreme values than a mean

 Pam works efficiently for small data sets but does not 

scale well for large data sets.

 O(k(n-k)2 ) for each iteration 

where n is # of data,k is # of clusters

Sampling based method, 

CLARA(Clustering LARge Applications)
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CLARA (Clustering Large Applications) (1990)

 CLARA (Kaufmann and Rousseeuw in 1990)

 Built in statistical analysis packages, such as S+

 It draws multiple samples of the data set, applies PAM on 

each sample, and gives the best clustering as the output

 Strength: deals with larger data sets than PAM

 Weakness:

 Efficiency depends on the sample size

 A good clustering based on samples will not 

necessarily represent a good clustering of the whole 

data set if the sample is biased
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CLARANS (“Randomized” CLARA) (1994)

 CLARANS (A Clustering Algorithm based on Randomized 

Search)  (Ng and Han’94)

 CLARANS draws sample of neighbors dynamically

 The clustering process can be presented as searching a 

graph where every node is a potential solution, that is, a 

set of k medoids

 If the local optimum is found, CLARANS starts with new 

randomly selected node in search for a new local optimum

 It is more efficient and scalable than both PAM and CLARA

 Focusing techniques and spatial access structures may 

further improve its performance (Ester et al.’95)
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Hierarchical Clustering

 Use distance matrix as clustering criteria.  This method 
does not require the number of clusters k as an input, 
but needs a termination condition 
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AGNES (Agglomerative Nesting)

 Introduced in Kaufmann and Rousseeuw (1990)

 Implemented in statistical analysis packages, e.g., Splus

 Use the Single-Link method and the dissimilarity matrix.  

 Merge nodes that have the least dissimilarity

 Go on in a non-descending fashion

 Eventually all nodes belong to the same cluster
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Dendrogram: Shows How the Clusters are Merged

Decompose data objects into a several levels of nested 
partitioning (tree of clusters), called a dendrogram. 

A clustering of the data objects is obtained by cutting the 
dendrogram at the desired level, then each connected 
component forms a cluster.
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DIANA (Divisive Analysis)

 Introduced in Kaufmann and Rousseeuw (1990)

 Implemented in statistical analysis packages, e.g., Splus

 Inverse order of AGNES

 Eventually each node forms a cluster on its own
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Density-Based Clustering Methods

 Clustering based on density (local cluster criterion), such 
as density-connected points

 Major features:
 Discover clusters of arbitrary shape
 Handle noise
 One scan
 Need density parameters as termination condition

 Several interesting studies:

 DBSCAN: Ester, et al. (KDD’96)

 OPTICS: Ankerst, et al (SIGMOD’99).

 DENCLUE: Hinneburg & D. Keim  (KDD’98)

 CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)
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Density-Based Clustering: Basic Concepts

 Two parameters:

 Eps: Maximum radius of the neighbourhood

 MinPts: Minimum number of points in an Eps-
neighbourhood of that point

 NEps(p): {q belongs to D | dist(p,q) <= Eps}

 Directly density-reachable: A point p is directly density-
reachable from a point q w.r.t. Eps, MinPts if 

 p belongs to NEps(q)

 core point condition:

|NEps (q)| >= MinPts

p

q

MinPts = 5

Eps = 1 cm
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Density-Reachable and Density-Connected

 Density-reachable: 

 A point p is density-reachable from 
a point q w.r.t. Eps, MinPts if there 
is a chain of points p1, …, pn, p1 = 

q, pn = p such that pi+1 is directly 
density-reachable from pi

 Density-connected

 A point p is density-connected to a 
point q w.r.t. Eps, MinPts if there 
is a point o such that both, p and 
q are density-reachable from o
w.r.t. Eps and MinPts

p
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p q
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DBSCAN: Density Based Spatial Clustering of 
Applications with Noise

 Relies on a density-based notion of cluster:  A cluster is 
defined as a maximal set of density-connected points

 Discovers clusters of arbitrary shape in spatial databases 
with noise
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DBSCAN: The Algorithm

 Arbitrary select a point p

 Retrieve all points density-reachable from p w.r.t. Eps

and MinPts.

 If p is a core point, a cluster is formed.

 If p is a border point, no points are density-reachable 

from p and DBSCAN visits the next point of the database.

 Continue the process until all of the points have been 

processed.
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DBSCAN: Sensitive to Parameters
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Summary

 Cluster analysis groups objects based on their similarity

and has wide applications

 Measure of similarity can be computed for various types 

of data

 Clustering algorithms can be categorized into partitioning 

methods, hierarchical methods, and density-based 

methods

 There are still lots of research issues on cluster analysis
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