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What is Cluster Analysis?

 Cluster: a collection of data objects

 Similar to one another within the same cluster

 Dissimilar to the objects in other clusters

 Cluster analysis

 Finding similarities between data according to the 

characteristics found in the data and grouping similar 

data objects into clusters

 Unsupervised learning: no predefined classes

 Typical applications

 As a stand-alone tool to get insight into data distribution 

 As a preprocessing step for other algorithms
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Clustering: Rich Applications and 
Multidisciplinary Efforts

 Pattern Recognition

 Spatial Data Analysis 

 Create thematic maps in GIS by clustering feature 

spaces

 Detect spatial clusters or for other spatial mining tasks

 Image Processing

 Economic Science (especially market research)

 WWW

 Document classification

 Cluster Weblog data to discover groups of similar access 

patterns
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Quality: What Is Good Clustering?

 A good clustering method will produce high quality 

clusters with

 high intra-class similarity

 low inter-class similarity 

 The quality of a clustering result depends on both the 

similarity measure used by the method and its 

implementation

 The quality of a clustering method is also measured by its 

ability to discover some or all of the hidden patterns
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Measure the Quality of Clustering

 Dissimilarity/Similarity metric: Similarity is expressed in 

terms of a distance function, typically metric: d(i, j)

 There is a separate “quality” function that measures the 

“goodness” of a cluster.

 The definitions of distance functions are usually very 

different for interval-scaled, boolean, categorical, ordinal 

ratio, and vector variables.

 Weights should be associated with different variables 

based on applications and data semantics.

 It is hard to define “similar enough” or “good enough” 

 the answer is typically highly subjective.
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Data Structures

 Data matrix

 (two modes)

 Dissimilarity matrix

 (one mode)

























npx...nfx...n1x

...............

ipx...ifx...i1x

...............

1px...1fx...11x























0...)2,()1,(

:::

)2,3()

...ndnd

0dd(3,1

0d(2,1)

0



January 10, 2022 Data Mining: Concepts and Techniques 9

Type of data in clustering analysis

 Interval-scaled variables

 Binary variables

 Nominal, ordinal, and ratio variables

 Variables of mixed types
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Interval-valued variables

 Standardize data

 Calculate the mean absolute deviation:

where

 Calculate the standardized measurement (z-score)

 Using mean absolute deviation is more robust than using 

standard deviation 
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Similarity and Dissimilarity Between 
Objects

 Distances are normally used to measure the similarity or 

dissimilarity between two data objects

 Some popular ones include: Minkowski distance:

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are 

two p-dimensional data objects, and q is a positive 

integer

 If q = 1, d is Manhattan distance
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Similarity and Dissimilarity Between 
Objects (Cont.)

 If q = 2, d is Euclidean distance:

 Properties

 d(i,j)  0

 d(i,i) = 0

 d(i,j) = d(j,i)

 d(i,j)  d(i,k) + d(k,j)

 Also, one can use weighted distance, parametric 

Pearson product moment correlation, or other 

disimilarity measures
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Binary Variables

 A contingency table for binary 

data

 Distance measure for 

symmetric binary variables: 

 Distance measure for 

asymmetric binary variables: 

 Jaccard coefficient (similarity

measure for asymmetric 

binary variables): 
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Dissimilarity between Binary Variables

 Example

 gender is a symmetric attribute

 the remaining attributes are asymmetric binary

 let the values Y and P be set to 1, and the value N be set to 0

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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Nominal Variables

 A generalization of the binary variable in that it can take 

more than 2 states, e.g., red, yellow, blue, green

 Method 1: Simple matching

 m: # of matches, p: total # of variables

 Method 2: use a large number of binary variables

 creating a new binary variable for each of the M

nominal states
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Ordinal Variables

 An ordinal variable can be discrete or continuous

 Order is important, e.g., rank

 Can be treated like interval-scaled 

 replace xif by their rank 

 map the range of each variable onto [0, 1] by replacing

i-th object in the f-th variable by

 compute the dissimilarity using methods for interval-

scaled variables
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Ratio-Scaled Variables

 Ratio-scaled variable: a positive measurement on a 

nonlinear scale, approximately at exponential scale, 

such as AeBt or Ae-Bt

 Methods:

 treat them like interval-scaled variables—not a good 

choice! (why?—the scale can be distorted)

 apply logarithmic transformation

yif = log(xif)

 treat them as continuous ordinal data treat their rank 

as interval-scaled
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Variables of Mixed Types

 A database may contain all the six types of variables

 symmetric binary, asymmetric binary, nominal, 
ordinal, interval and ratio

 One may use a weighted formula to combine their 
effects

 f is binary or nominal:

dij
(f) = 0  if xif = xjf , or dij

(f) = 1 otherwise

 f is interval-based: use the normalized distance

 f is ordinal or ratio-scaled

 compute ranks rif and  

 and treat zif as interval-scaled
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Vector Objects

 Vector objects: keywords in documents, gene 

features in micro-arrays, etc.

 Broad applications: information retrieval, biologic 

taxonomy, etc.

 Cosine measure

 A variant: Tanimoto coefficient
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Major Clustering Approaches

 Partitioning approach: 

 Construct various partitions and then evaluate them by some criterion, e.g., 

minimizing the sum of square errors

 Typical methods: k-means, k-medoids, CLARANS

 Hierarchical approach: 

 Create a hierarchical decomposition of the set of data (or objects) using some 

criterion

 Typical methods: Diana, Agnes

 Density-based approach: 

 Based on connectivity and density functions

 Typical methods: DBSCAN
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Typical Alternatives to Calculate the Distance 
between Clusters

 Single link:  smallest distance between an element in one cluster 

and an element in the other, i.e.,  dis(Ki, Kj) = min(tip, tjq)

 Complete link: largest distance between an element in one cluster 

and an element in the other, i.e.,  dis(Ki, Kj) = max(tip, tjq)

 Average: avg distance between an element in one cluster and an 

element in the other, i.e.,  dis(Ki, Kj) = avg(tip, tjq)

 Centroid: distance between the centroids of two clusters, i.e.,  

dis(Ki, Kj) = dis(Ci, Cj)

 Medoid: distance between the medoids of two clusters, i.e.,  dis(Ki, 

Kj) = dis(Mi, Mj)

 Medoid: one chosen, centrally located object in the cluster



Distance between clusters

• CD(X,Y)=minx X, y Y D(x,y)

Single-link method

• CD(X,Y)=maxx X, y Y D(x,y)

Complete-link method

• CD(X,Y)=avgx X, y Y D(x,y)

Average-link method

• CD(X,Y)=D( avg(X) , avg(Y) )

Centroid method
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Centroid, Radius and Diameter of a 
Cluster (for numerical data sets)

 Centroid:  the “middle” of a cluster

 Radius: square root of average distance from any point of the 

cluster to its centroid

 Diameter: square root of average mean squared distance between 

all pairs of points in the cluster
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Partitioning Algorithms: Basic Concept

 Partitioning method: Construct a partition of a database D of n objects 

into a set of k clusters, s.t., min sum of squared distance

 Given a k, find a partition of k clusters that optimizes the chosen 

partitioning criterion

 Global optimal: exhaustively enumerate all partitions

 Heuristic methods: k-means and k-medoids algorithms

 k-means (MacQueen’67): Each cluster is represented by the center 

of the cluster

 k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects 

in the cluster  
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The K-Means Clustering Method

 Given k, the k-means algorithm is implemented in 

four steps:

 Partition objects into k nonempty subsets

 Compute seed points as the centroids of the 

clusters of the current partition (the centroid is the 

center, i.e., mean point, of the cluster)

 Assign each object to the cluster with the nearest 

seed point  

 Go back to Step 2, stop when no more new 

assignment
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The K-Means Clustering Method

 Example
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Comments on the K-Means Method

 Strength: Relatively efficient: O(tkn), where n is # objects, k is # 

clusters, and t  is # iterations. Normally, k, t << n.

 Comparing: PAM: O(k(n-k)2 ), CLARA: O(ks2 + k(n-k))

 Comment: Often terminates at a local optimum. The global optimum

may be found using techniques such as: deterministic annealing and 

genetic algorithms

 Weakness

 Applicable only when mean is defined, then what about categorical 

data?

 Need to specify k, the number of clusters, in advance

 Unable to handle noisy data and outliers

 Not suitable to discover clusters with non-convex shapes
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Variations of the K-Means Method

 A few variants of the k-means which differ in

 Selection of the initial k means

 Dissimilarity calculations

 Strategies to calculate cluster means

 Handling categorical data: k-modes (Huang’98)

 Replacing means of clusters with modes

 Using new dissimilarity measures to deal with categorical objects

 Using a frequency-based method to update modes of clusters

 A mixture of categorical and numerical data: k-prototype method
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What Is the Problem of the K-Means Method?

 The k-means algorithm is sensitive to outliers !

 Since an object with an extremely large value may substantially 

distort the distribution of the data.

 K-Medoids:  Instead of taking the mean value of the object in a 

cluster as a reference point, medoids can be used, which is the most 

centrally located object in a cluster. 
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The K-Medoids Clustering Method

 Find representative objects, called medoids, in clusters

 PAM (Partitioning Around Medoids, 1987)

 starts from an initial set of medoids and iteratively replaces one 

of the medoids by one of the non-medoids if it improves the 

total distance of the resulting clustering

 PAM works effectively for small data sets, but does not scale 

well for large data sets

 CLARA (Kaufmann & Rousseeuw, 1990)

 CLARANS (Ng & Han, 1994): Randomized sampling

 Focusing + spatial data structure (Ester et al., 1995)
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A Typical K-Medoids Algorithm (PAM)
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PAM (Partitioning Around Medoids) (1987)

 PAM (Kaufman and Rousseeuw, 1987), built in Splus

 Use real object to represent the cluster

 Select k representative objects arbitrarily

 For each pair of non-selected object h and selected 

object i, calculate the total swapping cost TCih

 For each pair of i and h, 

 If TCih < 0, i is replaced by h

 Then assign each non-selected object to the most 

similar representative object

 repeat steps 2-3 until there is no change
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PAM Clustering: Total swapping cost TCih=jCjih
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What Is the Problem with PAM?

 Pam is more robust than k-means in the presence of 

noise and outliers because a medoid is less influenced by 

outliers or other extreme values than a mean

 Pam works efficiently for small data sets but does not 

scale well for large data sets.

 O(k(n-k)2 ) for each iteration 

where n is # of data,k is # of clusters

Sampling based method, 

CLARA(Clustering LARge Applications)
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CLARA (Clustering Large Applications) (1990)

 CLARA (Kaufmann and Rousseeuw in 1990)

 Built in statistical analysis packages, such as S+

 It draws multiple samples of the data set, applies PAM on 

each sample, and gives the best clustering as the output

 Strength: deals with larger data sets than PAM

 Weakness:

 Efficiency depends on the sample size

 A good clustering based on samples will not 

necessarily represent a good clustering of the whole 

data set if the sample is biased
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CLARANS (“Randomized” CLARA) (1994)

 CLARANS (A Clustering Algorithm based on Randomized 

Search)  (Ng and Han’94)

 CLARANS draws sample of neighbors dynamically

 The clustering process can be presented as searching a 

graph where every node is a potential solution, that is, a 

set of k medoids

 If the local optimum is found, CLARANS starts with new 

randomly selected node in search for a new local optimum

 It is more efficient and scalable than both PAM and CLARA

 Focusing techniques and spatial access structures may 

further improve its performance (Ester et al.’95)
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Hierarchical Clustering

 Use distance matrix as clustering criteria.  This method 
does not require the number of clusters k as an input, 
but needs a termination condition 
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AGNES (Agglomerative Nesting)

 Introduced in Kaufmann and Rousseeuw (1990)

 Implemented in statistical analysis packages, e.g., Splus

 Use the Single-Link method and the dissimilarity matrix.  

 Merge nodes that have the least dissimilarity

 Go on in a non-descending fashion

 Eventually all nodes belong to the same cluster
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Dendrogram: Shows How the Clusters are Merged

Decompose data objects into a several levels of nested 
partitioning (tree of clusters), called a dendrogram. 

A clustering of the data objects is obtained by cutting the 
dendrogram at the desired level, then each connected 
component forms a cluster.
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DIANA (Divisive Analysis)

 Introduced in Kaufmann and Rousseeuw (1990)

 Implemented in statistical analysis packages, e.g., Splus

 Inverse order of AGNES

 Eventually each node forms a cluster on its own
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Density-Based Clustering Methods

 Clustering based on density (local cluster criterion), such 
as density-connected points

 Major features:
 Discover clusters of arbitrary shape
 Handle noise
 One scan
 Need density parameters as termination condition

 Several interesting studies:

 DBSCAN: Ester, et al. (KDD’96)

 OPTICS: Ankerst, et al (SIGMOD’99).

 DENCLUE: Hinneburg & D. Keim  (KDD’98)

 CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)
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Density-Based Clustering: Basic Concepts

 Two parameters:

 Eps: Maximum radius of the neighbourhood

 MinPts: Minimum number of points in an Eps-
neighbourhood of that point

 NEps(p): {q belongs to D | dist(p,q) <= Eps}

 Directly density-reachable: A point p is directly density-
reachable from a point q w.r.t. Eps, MinPts if 

 p belongs to NEps(q)

 core point condition:

|NEps (q)| >= MinPts

p

q

MinPts = 5

Eps = 1 cm
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Density-Reachable and Density-Connected

 Density-reachable: 

 A point p is density-reachable from 
a point q w.r.t. Eps, MinPts if there 
is a chain of points p1, …, pn, p1 = 

q, pn = p such that pi+1 is directly 
density-reachable from pi

 Density-connected

 A point p is density-connected to a 
point q w.r.t. Eps, MinPts if there 
is a point o such that both, p and 
q are density-reachable from o
w.r.t. Eps and MinPts

p

q
p1

p q

o
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DBSCAN: Density Based Spatial Clustering of 
Applications with Noise

 Relies on a density-based notion of cluster:  A cluster is 
defined as a maximal set of density-connected points

 Discovers clusters of arbitrary shape in spatial databases 
with noise

Core

Border

Outlier

Eps = 1cm

MinPts = 5
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DBSCAN: The Algorithm

 Arbitrary select a point p

 Retrieve all points density-reachable from p w.r.t. Eps

and MinPts.

 If p is a core point, a cluster is formed.

 If p is a border point, no points are density-reachable 

from p and DBSCAN visits the next point of the database.

 Continue the process until all of the points have been 

processed.
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DBSCAN: Sensitive to Parameters
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Chapter 5. Cluster Analysis

1. What is Cluster Analysis?

2. Types of Data in Cluster Analysis

3. A Categorization of Major Clustering Methods

4. Partitioning Methods

5. Hierarchical Methods

6. Density-Based Methods

7. Summary 
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Summary

 Cluster analysis groups objects based on their similarity

and has wide applications

 Measure of similarity can be computed for various types 

of data

 Clustering algorithms can be categorized into partitioning 

methods, hierarchical methods, and density-based 

methods

 There are still lots of research issues on cluster analysis
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