Data Mining: Concepts and Techniques

— Chapter 5 —

Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign

<u>www.cs.uiuc.edu/~hanj</u>

©2006 Jiawei Han and Micheline Kamber, All rights reserved

January 10, 2022

Data Mining: Concepts and Techniques

Chapter 5. Cluster Analysis

1. What is Cluster Analysis?

- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Summary

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Quality: What Is Good Clustering?

- A <u>good clustering</u> method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - Iow inter-class similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

Measure the Quality of Clustering

- Dissimilarity/Similarity metric: Similarity is expressed in terms of a distance function, typically metric: d(i, j)
- There is a separate "quality" function that measures the "goodness" of a cluster.
- The definitions of distance functions are usually very different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables.
- Weights should be associated with different variables based on applications and data semantics.
- It is hard to define "similar enough" or "good enough"
 - the answer is typically highly subjective.

Chapter 5. Cluster Analysis

1. What is Cluster Analysis?

- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Summary

Data Structures

Data matrix(two modes)

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix(one mode)

$$\begin{bmatrix} 0 & & & \\ d(2,1) & 0 & & \\ d(3,1) & d(3,2) & 0 & \\ \vdots & \vdots & \vdots & \\ d(n,1) & d(n,2) & \dots & 0 \end{bmatrix}$$

Type of data in clustering analysis

- Interval-scaled variables
- Binary variables
- Nominal, ordinal, and ratio variables
- Variables of mixed types

Interval-valued variables

Standardize data

• Calculate the mean absolute deviation: $s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + ... + |x_{nf} - m_f|)$

where
$$m_f = \frac{1}{n}(x_{1f} + x_{2f} + ... + x_{nf})$$

Calculate the standardized measurement (*z-score*)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: *Minkowski distance*:

 $d(i,j) = \sqrt[q]{(|x_{i_1} - x_{j_1}|^q + |x_{i_2} - x_{j_2}|^q + ... + |x_{i_p} - x_{j_p}|^q)}$ where $i = (x_{i_1}, x_{i_2}, ..., x_{i_p})$ and $j = (x_{j_1}, x_{j_2}, ..., x_{j_p})$ are two *p*-dimensional data objects, and *q* is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i_1} - x_{j_1}|^2 + |x_{i_2} - x_{j_2}|^2 + \dots + |x_{i_p} - x_{j_p}|^2)}$$
operties

- Properties
 - *d(i,j)* ≥ 0

$$\bullet d(i,i) = 0$$

- $d(i,j) \leq d(i,k) + d(k,j)$
- Also, one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures

Binary Variables

• A contingency table for binary 1data 0

- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (*similarity* measure for *asymmetric* binary variables):

bject i
bject i
sum
$$a+c$$
 $b+d$ p
 $d(i,j) = \frac{b+c}{a+b+c+d}$

а

Object *j*

()

h

SUM

a+b

$$d(i,j) = \frac{b+c}{a+b+c}$$

 $sim_{Jaccard}(i,j) = \frac{a}{a+b+c}$

Dissimilarity between Binary Variables

• Example

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Μ	Y	N	Р	N	N	Ν
Mary	F	Y	Ν	Р	N	Р	Ν
Jim	Μ	Y	Р	N	N	N	Ν

- gender is a symmetric attribute
- the remaining attributes are asymmetric binary
- Iet the values Y and P be set to 1, and the value N be set to 0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

January 10, 2022

Data Mining: Concepts and Techniques

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - *m*: # of matches, *p*: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

Method 2: use a large number of binary variables
 creating a new binary variable for each of the *M* nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank

$$r_{if} \in \{1, ..., M_f\}$$

map the range of each variable onto [0, 1] by replacing
 i-th object in the *f*-th variable by

$$z_{if} = rac{r_{if} - 1}{M_{f} - 1}$$

 compute the dissimilarity using methods for intervalscaled variables

Ratio-Scaled Variables

- <u>Ratio-scaled variable</u>: a positive measurement on a nonlinear scale, approximately at exponential scale, such as Ae^{Bt} or Ae^{-Bt}
- Methods:
 - treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects $d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$
 - *f* is binary or nominal:
 - $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ otherwise
 - f is interval-based: use the normalized distance
 - f is ordinal or ratio-scaled
 - compute ranks r_{if} and
 - and treat z_{if} as interval-scaled

$$Z_{if} = rac{r_{if} - 1}{M_f - 1}$$

Vector Objects

- Vector objects: keywords in documents, gene features in micro-arrays, etc.
- Broad applications: information retrieval, biologic taxonomy, etc.

• Cosine measure
$$s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{|\vec{X}||\vec{Y}|},$$

 $\vec{X^t}$ is a transposition of vector \vec{X} , $|\vec{X}|$ is the Euclidean normal of vector \vec{X} ,

• A variant: Tanimoto coefficient $s(\vec{X}, \vec{Y}) = \frac{\vec{X}^t \cdot \vec{Y}}{\vec{X}^t \cdot \vec{X} + \vec{Y}^t \cdot \vec{Y} - \vec{X}^t \cdot \vec{Y}},$

Chapter 5. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Summary

Major Clustering Approaches

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
 - Typical methods: k-means, k-medoids, CLARANS
- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSCAN

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = min(t_{ip}, t_{jq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = max(t_{ip}, t_{jq})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dis(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e., dis(K_i, K_j) = dis(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dis(K_i, K_j) = dis(M_i, M_j)
 - Medoid: one chosen, centrally located object in the cluster

January 10, 2022

Data Mining: Concepts and Techniques

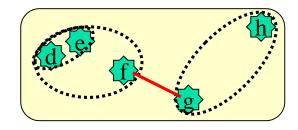
Distance between clusters

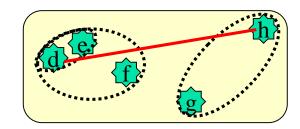
• $CD(X,Y)=min_{x \in X, y \in Y}D(x,y)$ Single-link method

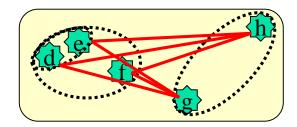
• $CD(X,Y)=max_{x \in X, y \in Y}D(x,y)$ *Complete-link method*

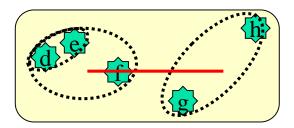
• $CD(X,Y)=avg_{x \in X, y \in Y}D(x,y)$ Average-link method

 CD(X,Y)=D(avg(X) , avg(Y)) Centroid method









Centroid, Radius and Diameter of a Cluster (for numerical data sets)

Centroid: the "middle" of a cluster

$$C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

Radius: square root of average distance from any point of the cluster to its centroid

$$R_m = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_m)^2}{N}}$$

 Diameter: square root of average mean squared distance between all pairs of points in the cluster

$$D_m = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^2}{N(N-1)}}$$

Chapter 5. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Summary

Partitioning Algorithms: Basic Concept

<u>Partitioning method</u>: Construct a partition of a database *D* of *n* objects into a set of *k* clusters, s.t., min sum of squared distance

$$\sum_{m=1}^{k} \sum_{t_{mi} \in Km} (C_m - t_{mi})^2$$

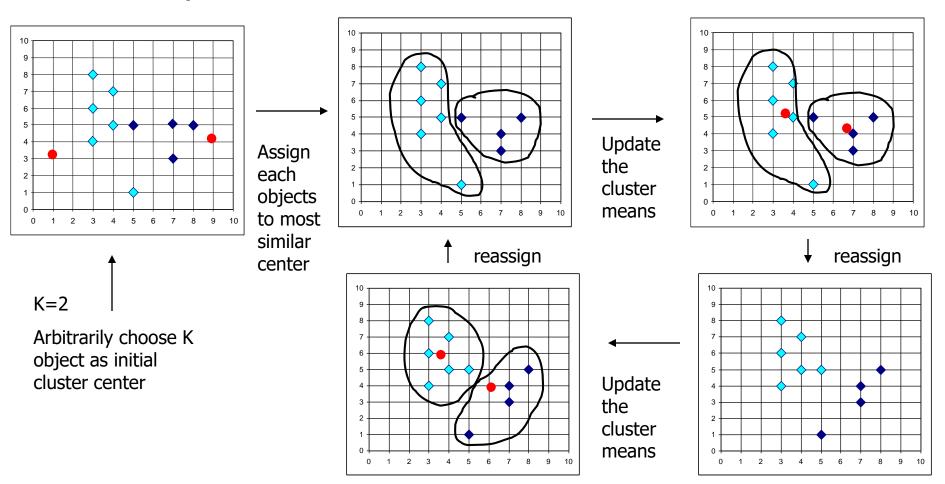
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partition (the centroid is the center, i.e., *mean point*, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when no more new assignment

The K-Means Clustering Method

Example



Data Mining: Concepts and Techniques

Comments on the *K-Means* Method

Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>

Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))

- <u>Comment</u>: Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* and *genetic algorithms*
- Weakness
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify *k*, the *number* of clusters, in advance
 - Unable to handle noisy data and *outliers*
 - Not suitable to discover clusters with *non-convex shapes*

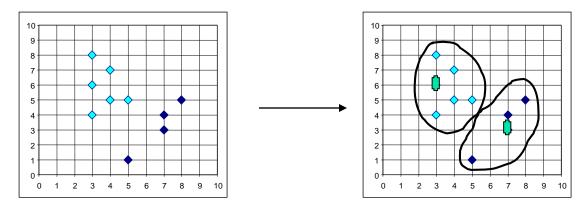
Variations of the K-Means Method

- A few variants of the *k-means* which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method

What Is the Problem of the K-Means Method?

The k-means algorithm is sensitive to outliers !

- Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.



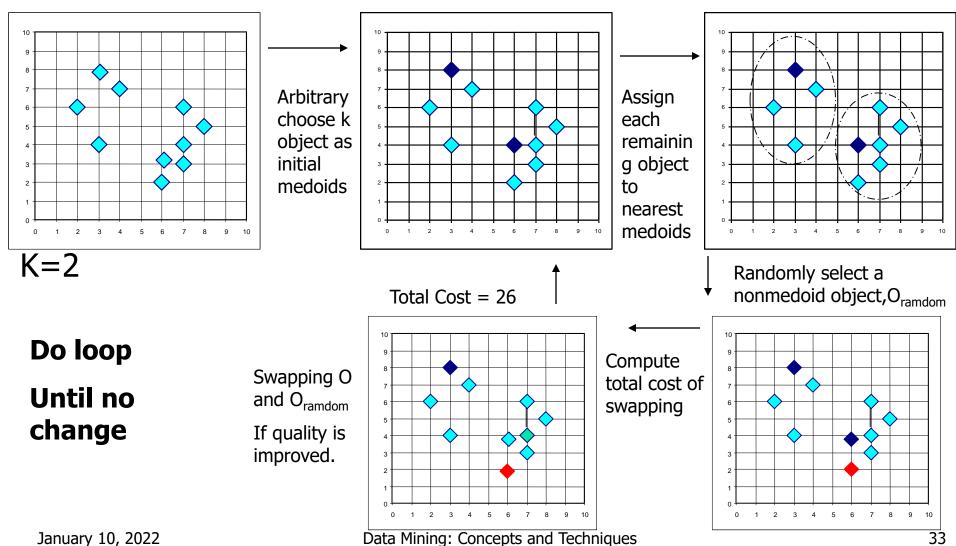
January 10, 2022

Data Mining: Concepts and Techniques

The K-Medoids Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets
- *CLARA* (Kaufmann & Rousseeuw, 1990)
- *CLARANS* (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

A Typical K-Medoids Algorithm (PAM)

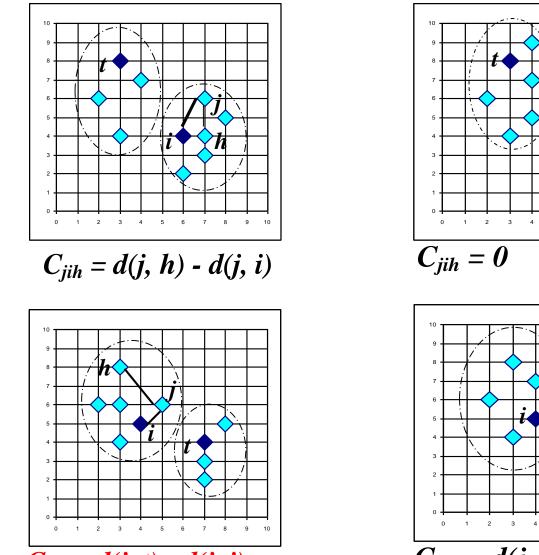


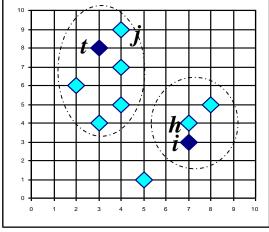
Total Cost = 20

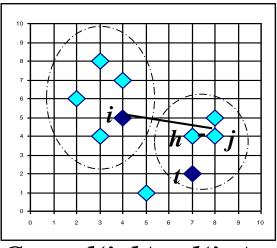
PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select k representative objects arbitrarily
 - For each pair of non-selected object *h* and selected object *i*, calculate the total swapping cost *TC_{ih}*
 - For each pair of *i* and *h*,
 - If $TC_{ih} < 0$, **i** is replaced by **h**
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change

PAM Clustering: Total swapping cost $TC_{ih} = \sum_{j} C_{jih}$







January 10, 20 $G_{jih} = d(j, t) - d(j, i)$ Data Mining: Concepts and the mining d(j, h) - d(j, t)

What Is the Problem with PAM?

- Pam is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- Pam works efficiently for small data sets but does not
 scale well for large data sets.
 - O(k(n-k)²) for each iteration

where n is # of data,k is # of clusters

→ Sampling based method,

CLARA(Clustering LARge Applications)

CLARA (Clustering Large Applications) (1990)

- CLARA (Kaufmann and Rousseeuw in 1990)
 - Built in statistical analysis packages, such as S+
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

January 10, 2022

CLARANS ("Randomized" CLARA) (1994)

- CLARANS (A Clustering Algorithm based on Randomized Search) (Ng and Han'94)
- CLARANS draws sample of neighbors dynamically
- The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of k medoids
- If the local optimum is found, CLARANS starts with new randomly selected node in search for a new local optimum
- It is more efficient and scalable than both *PAM* and *CLARA*
- Focusing techniques and spatial access structures may further improve its performance (Ester et al.'95)

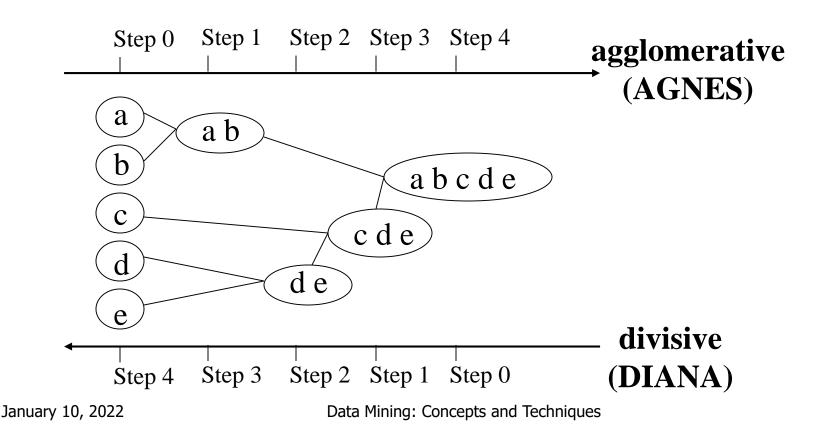
January 10, 2022

Chapter 5. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Summary

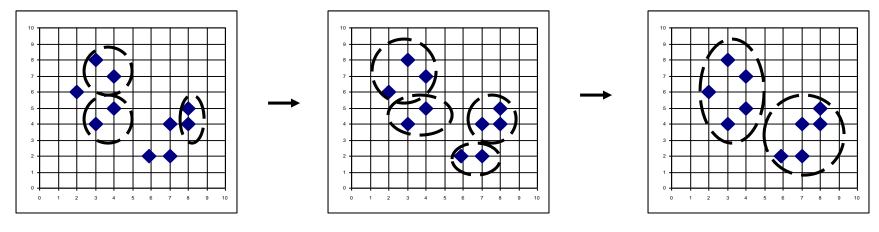
Hierarchical Clustering

 Use distance matrix as clustering criteria. This method does not require the number of clusters *k* as an input, but needs a termination condition



AGNES (Agglomerative Nesting)

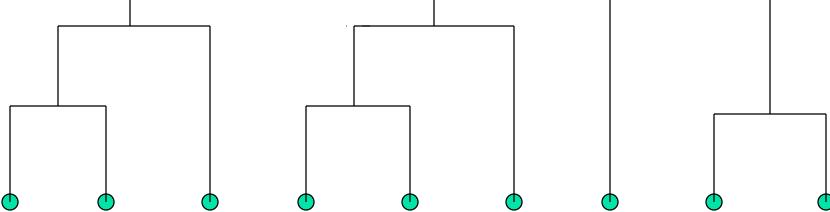
- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Use the Single-Link method and the dissimilarity matrix.
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster



Dendrogram: Shows How the Clusters are Merged

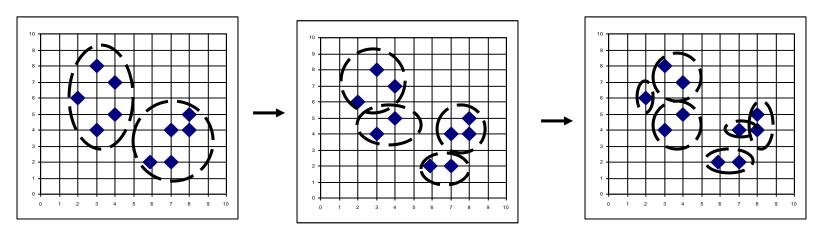
Decompose data objects into a several levels of nested partitioning (<u>tree</u> of clusters), calle<u>d a <u>dendrogram</u>.</u>

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a cluster.



DIANA (Divisive Analysis)

- Introduced in Kaufmann and Rousseeuw (1990)
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own



January 10, 2022

Chapter 5. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Summary

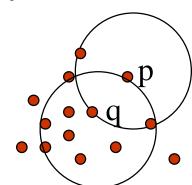
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - <u>CLIQUE</u>: Agrawal, et al. (SIGMOD'98) (more grid-based)

Density-Based Clustering: Basic Concepts

- Two parameters:
 - *Eps*: Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Epsneighbourhood of that point
- $N_{Eps}(p)$: {q belongs to D | dist(p,q) <= Eps}
- Directly density-reachable: A point p is directly densityreachable from a point q w.r.t. Eps, MinPts if
 - *p* belongs to $N_{Eps}(q)$
 - core point condition:

$$|N_{Eps}(q)| >= MinPts$$



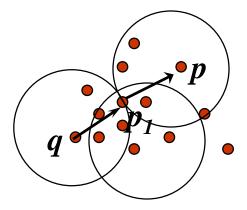
MinPts = 5

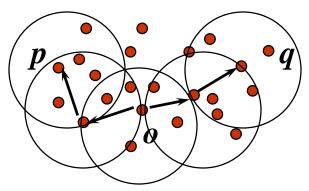
Eps = 1 cm

Density-Reachable and Density-Connected

- Density-reachable:
 - A point *p* is density-reachable from a point *q* w.r.t. *Eps*, *MinPts* if there is a chain of points *p*₁, ..., *p*_n, *p*₁ = *q*, *p*_n = *p* such that *p*_{i+1} is directly density-reachable from *p*_i

A point *p* is density-connected to a point *q* w.r.t. *Eps, MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* w.r.t. *Eps* and *MinPts*

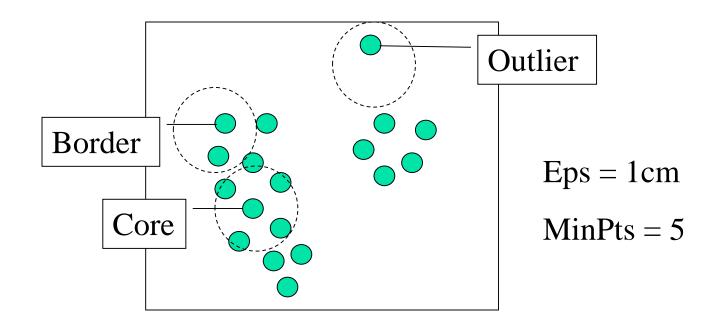




January 10, 2022

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise



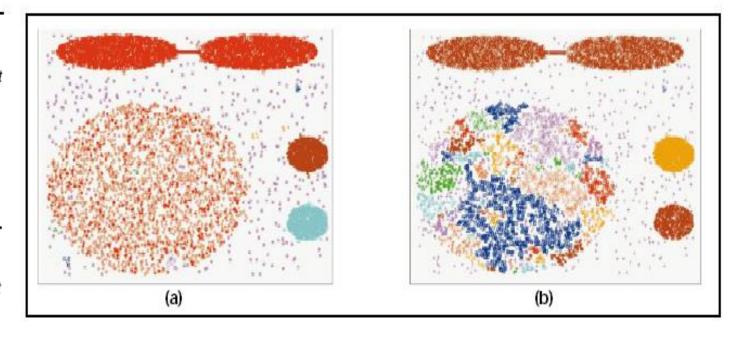
DBSCAN: The Algorithm

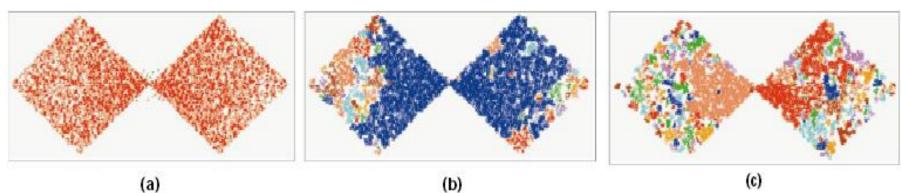
- Arbitrary select a point *p*
- Retrieve all points density-reachable from *p* w.r.t. *Eps* and *MinPts*.
- If *p* is a core point, a cluster is formed.
- If *p* is a border point, no points are density-reachable from *p* and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.





Chapter 5. Cluster Analysis

- 1. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Summary

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, and density-based methods
- There are still lots of research issues on cluster analysis

References (1)

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD'98
- M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
- M. Ankerst, M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure, SIGMOD'99.
- P. Arabie, L. J. Hubert, and G. De Soete. Clustering and Classification. World Scientific, 1996
- Beil F., Ester M., Xu X.: "<u>Frequent Term-Based Text Clustering</u>", KDD'02
- M. M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF: Identifying Density-Based Local Outliers. SIGMOD 2000.
- M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. KDD'96.
- M. Ester, H.-P. Kriegel, and X. Xu. Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. SSD'95.
- D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. VLDB'98.

January 10, 2022

References (2)

- V. Ganti, J. Gehrke, R. Ramakrishan. CACTUS Clustering Categorical Data Using Summaries. *KDD'99*.
- D. Gibson, J. Kleinberg, and P. Raghavan. Clustering categorical data: An approach based on dynamic systems. In Proc. VLDB'98.
- S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. SIGMOD'98.
- S. Guha, R. Rastogi, and K. Shim. <u>ROCK: A robust clustering algorithm for categorical attributes</u>. In *ICDE'99*, pp. 512-521, Sydney, Australia, March 1999.
- A. Hinneburg, D.I A. Keim: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. KDD'98.
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Printice Hall, 1988.
- G. Karypis, E.-H. Han, and V. Kumar. <u>CHAMELEON: A Hierarchical Clustering Algorithm Using</u> <u>Dynamic Modeling.</u> *COMPUTER*, 32(8): 68-75, 1999.
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98.
- G. J. McLachlan and K.E. Bkasford. Mixture Models: Inference and Applications to Clustering. John Wiley and Sons, 1988.
- P. Michaud. Clustering techniques. Future Generation Computer systems, 13, 1997.
- R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. VLDB'94.

January 10, 2022

References (3)

- L. Parsons, E. Haque and H. Liu, Subspace Clustering for High Dimensional Data: A Review, SIGKDD Explorations, 6(1), June 2004
- E. Schikuta. Grid clustering: An efficient hierarchical clustering method for very large data sets. Proc. 1996 Int. Conf. on Pattern Recognition,.
- G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-resolution clustering approach for very large spatial databases. VLDB'98.
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. <u>Constraint-Based Clustering in Large</u> <u>Databases</u>, ICDT'01.
- A. K. H. Tung, J. Hou, and J. Han. *Spatial Clustering in the Presence of Obstacles*, ICDE'01
- H. Wang, W. Wang, J. Yang, and P.S. Yu. <u>Clustering by pattern similarity in large data</u> <u>sets</u>, *SIGMOD*'02.
- W. Wang, Yang, R. Muntz, STING: A Statistical Information grid Approach to Spatial Data Mining, VLDB'97.
- T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH : an efficient data clustering method for very large databases. SIGMOD'96.

January 10, 2022